1887

Abstract

A Gram-reaction-positive, rod-shaped bacterium, designated strain CC-VM-Y, was isolated from the faeces of the pill millipede Attems from India and was subsequently studied to determine its taxonomic position. Based on16S rRNA gene sequence similarities, the isolate clearly grouped with members of the genus . On the basis of pairwise comparisons of the 16S rRNA gene sequences, strain CC-VM-Y was most closely related to DS-66 (98 %), DSM 160809 (97.8 %) and NBRC 15708 (97.9 %). The peptidoglycan contained the amino acids ornithine (Orn), alanine (Ala), glycine (Gly), homoserine (Hsr) and glutamic acid (Glu) in an approximate molar ratio of 1.0 : 0.8 : 2.2 : 0.8 : 0.3. In addition, substantial amounts of -3-hydroxy glutamic acid (Hyg) were detected, which is characteristic of peptidoglycan type B2β. The acyl type of the peptidoglycan was glycolyl. The menaquinones of strain CC-VM-Y were MK-13 (72 %), MK-12 (25 %) and MK-11 (3 %). The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, one unknown phospholipid and one unknown glycolipid. The fatty acid profile comprised anteiso-C, iso-C and anteiso-C as the major fatty acids, which was congruent with fatty acid profiles of other members of the genus . The results of physiological and biochemical tests as well as DNA–DNA hybridizations with the most closely related species, , and , revealed clear phenotypic and genotypic differences between strain CC-VM-Y and other members of the genus . Based on these results, strain CC-VM-Y ( = DSM 22421  = CCM 7681) represents a new species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026401-0
2011-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1334.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026401-0&mimeType=html&fmt=ahah

References

  1. Buczolits S. , Schumann P. , Valens M. , Rosselló-Mora R. , Busse H.-J. . ( 2008; ). Identification of a bacterial strain isolated from the liver of a laboratory mouse as Microbacterium paraoxydans and emended description of the species Microbacterium paraoxydans Laffineur et al. 2003. . Int J Microbiol 48:, 243–251. [CrossRef]
    [Google Scholar]
  2. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y.-W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef].[PubMed]
    [Google Scholar]
  3. Collins M. D. , Jones D. , Kroppenstedt R. M. . ( 1983; ). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen) as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:, 65–78.[CrossRef]
    [Google Scholar]
  4. Groth I. , Schumann P. , Weiss N. , Martin K. , Rainey F. A. . ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef].[PubMed]
    [Google Scholar]
  5. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  6. Kämpfer P. , Kroppenstedt R. M. . ( 2004; ). Pseudonocardia benzenivorans sp. nov.. Int J Syst Evol Microbiol 54:, 749–751. [CrossRef].[PubMed]
    [Google Scholar]
  7. Kämpfer P. , Steiof M. , Dott W. . ( 1991; ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  8. Kim K. K. , Park H. Y. , Park W. , Kim I. S. , Lee S.-T. . ( 2005; ). Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. . Int J Syst Evol Microbiol 55:, 2075–2079. [CrossRef].[PubMed]
    [Google Scholar]
  9. Li W.-J. , Chen H.-H. , Kim C.-J. , Park D.-J. , Tang S.-K. , Lee J.-C. , Xu L.-H. , Jiang C.-L. . ( 2005; ). Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. . Int J Syst Evol Microbiol 55:, 67–70. [CrossRef].[PubMed]
    [Google Scholar]
  10. MacKenzie S. L. . ( 1987; ). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  11. Orla-Jensen S. . ( 1919; ). The Lactic Acid Bacteria. Copenhagen:: Host & Sons;.
    [Google Scholar]
  12. Park H. Y. , Kim K. K. , Jin L. , Lee S.-T. . ( 2006; ). Microbacterium paludicola sp. nov., a novel xylanolytic bacterium isolated from swamp forest. . Int J Syst Evol Microbiol 56:, 535–539. [CrossRef].[PubMed]
    [Google Scholar]
  13. Rivas R. , Trujillo M. E. , Sánchez M. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2004; ). Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra . . Int J Syst Evol Microbiol 54:, 513–517. [CrossRef].[PubMed]
    [Google Scholar]
  14. Schleifer K. H. . ( 1985; ). Analysis of the chemical composition and primary structure of murein. . Meth Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  15. Schleifer K. H. , Kandler O. . ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  16. Takeuchi M. , Hatano K. . ( 1998; ). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . . Int J Syst Bacteriol 48:, 739–747. [CrossRef].[PubMed]
    [Google Scholar]
  17. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (MEGA) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed]
    [Google Scholar]
  18. Uchida K. , Kudo T. , Suzuki K. I. , Nakase T. . ( 1999; ). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. . J Gen Appl Microbiol 45:, 49–56. [CrossRef].[PubMed]
    [Google Scholar]
  19. Young C.-C. , Kämpfer P. , Shen F.-T. , Lai W.-A. , Arun A. B. . ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). . Int J Syst Evol Microbiol 55:, 423–426. [CrossRef].[PubMed]
    [Google Scholar]
  20. Young C.-C. , Busse H.-J. , Langer S. , Chu J.-N. , Schumann P. , Arun A. B. , Shen F.-T. , Rekha P. D. , Kämpfer P. . ( 2010; ). Microbacterium agarici sp. nov., Microbacterium humi sp. nov. and Microbacterium pseudoresistens sp. nov., isolated from the base of the mushroom Agaricus blazei . . Int J Syst Evol Microbiol 60:, 854–860. [CrossRef].[PubMed]
    [Google Scholar]
  21. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef].[PubMed]
    [Google Scholar]
  22. Zlamala C. , Schumann P. , Kämpfer P. , Valens M. , Rosselló-Mora R. , Lubitz W. , Busse H.-J. . ( 2002; ). Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. . Int J Syst Evol Microbiol 52:, 1229–1234.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026401-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026401-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1334 - 1337

IMAGE

Fatty acid profiles of strain CC-VM-Y and type strains of closely related species of the genus [PDF]

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error