1887

Abstract

Five bacterial strains were isolated from a non-toxigenic strain of the marine dinoflagellate (Lebour) Balech CCMP 116 (NEPCC C116), during a survey of the diversity of bacteria associated with paralytic shellfish toxin-producing cultures of spp. (Dinophyta). All strains were strictly aerobic, Gram-negative, straight or curved rods. Cells were dimorphic, with stalks (or prosthecae) and non-motile or non-stalked and motile, by means of a single polar flagellum. The bacteria grew best at salt concentrations ranging from 2 to 10 % and growth occurred at 10 °C, but not at 50 °C. The G+C content of the chromosomal DNA of the strains was determined to be 61–62 mol%. Major cellular fatty acids of the bacteria presented a unique profile. 16S rRNA gene sequence analysis showed the five strains to be related to genera of budding bacteria of marine origin in the ‘Alphaproteobacteria’, namely, , and , although they exhibited substantial differences in morphology, substrate utilization and fatty acid profile to members of these genera. The five strains are proposed to comprise a new species of a new genus, gen. nov., sp. nov., the type strain of which is C116-18 (=DSM 11625=NCIMB 13905).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02635-0
2003-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531901.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02635-0&mimeType=html&fmt=ahah

References

  1. Abraham, W.-R., Meyer, H., Lindholst, S., Vancanneyt, M. & Smit, J. ( 1997; ). Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato, Brevundimonas and Hyphomonas. Syst Appl Microbiol 20, 522–539.[CrossRef]
    [Google Scholar]
  2. Abraham, W.-R., Strömpl, C., Meyer, H. & 8 other authors ( 1999; ). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 49, 1053–1073.[CrossRef]
    [Google Scholar]
  3. Anast, N. & Smit, J. ( 1988; ). Isolation and characterization of marine caulobacters and assessment of their potential for genetic experimentation. Appl Environ Microbiol 54, 809–817.
    [Google Scholar]
  4. Ariskina, E. V. ( 1995; ). Heterogeneity of the species Caulobacter bacteroides revealed by DNA-DNA hybridization. Microbiology (English translation of Mikrobiologiya) 64, 427–429.
    [Google Scholar]
  5. Batrakov, S. G., Nikitin, D. I. & Pitryuk, I. A. ( 1996; ). A novel glycolipid, 1,2-diacyl-3-α-d-glucuronopyranosyl-sn-glycerol taurineamide, from the budding seawater bacterium Hyphomonas jannaschiana. Biochim Biophys Acta 1302, 167–176.[CrossRef]
    [Google Scholar]
  6. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513–1523.[CrossRef]
    [Google Scholar]
  7. Bligh, E. G. & Dyer, W. J. ( 1959; ). A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  8. Fenton, C. D. ( 1994; ). The isolation and characterization of Caulobacter from Manawatu water systems. MSc Thesis, Massey University, Palmerston North, New Zealand.
  9. Gallacher, S., Flynn, K. J., Franco, J. M., Brueggemann, E. E. & Hines, H. B. ( 1997; ). Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture. Appl Environ Microbiol 63, 239–245.
    [Google Scholar]
  10. Garrity, G. M., Winters, M. & Searles, D. B. ( 2001; ). Taxonomic outline of the procaryotic genera. In Bergey's Manual of Systematic Bacteriology, 2nd edn. Edited by G. M. Garrity. New York: Springer.
  11. Heller, D. N., Murphy, C. M., Cotter, R. J., Fenselau, C. & Uy, O. M. ( 1988; ). Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment. Anal Chem 60, 2787–2791.[CrossRef]
    [Google Scholar]
  12. Henrici, A. T. & Johnson, D. E. ( 1935; ). Studies of freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes. J Bacteriol 30, 61–93.
    [Google Scholar]
  13. Hold, G. L., Smith, E. A., Rappe, M. S. & 7 other authors ( 2001; ). Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol Ecol 37, 161–173.[CrossRef]
    [Google Scholar]
  14. Lünsdorf, H., Strömpl, C., Osborn, A. M., Bennasar, A., Moore, E. R. B., Abraham, W.-R. & Timmis, K. N. ( 2001; ). Approach to analyze interactions of microorganisms, hydrophobic substrates and soil colloids leading to formation of composite biofilms, and to study initial events in microbiogeological processes. In Microbial Growth in Biofilms, Part A. Edited by R. J. Doyle. San Diego: Academic Press.
  15. MacRae, J. D. & Smit, J. ( 1991; ). Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol 57, 751–758.
    [Google Scholar]
  16. Merker, R. I. & Smit, J. ( 1988; ). Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl Environ Microbiol 54, 2078–2085.
    [Google Scholar]
  17. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  18. Moore, R. L., Schmidt, J., Poindexter, J. & Staley, J. T. ( 1978; ). Deoxyribonucleic acid homology among the caulobacters. Int J Syst Bacteriol 28, 349–353.[CrossRef]
    [Google Scholar]
  19. Murphy, R. C. & Harrison, K. A. ( 1994; ). Fast atom bombardment mass spectrometry of phospholipids. Mass Spectrom Rev 13, 57–75.[CrossRef]
    [Google Scholar]
  20. Neefs, J.-M., Van de Peer, Y., De Rijk, P., Goris, A. & De Wachter, R. ( 1991; ). Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 19 Suppl, 1987–2015.
    [Google Scholar]
  21. Nikitin, D. I., Vishnewetskaya, O. Yu., Chumakov, K. M. & Zlatkin, I. V. ( 1990; ). Evolutionary relationship of some stalked and budding bacteria (genera Caulobacter, “Hyphobacter”, Hyphomonas and Hyphomicrobium) as studied by the new integral taxonomical method. Arch Microbiol 153, 123–128.[CrossRef]
    [Google Scholar]
  22. Poindexter, J. L. S. ( 1964; ). Biological properties and classification of the Caulobacter group. Bacteriol Rev 28, 231–295.
    [Google Scholar]
  23. Poindexter, J. L. S. & Cohen-Bazire, G. ( 1964; ). The fine structure of stalked bacteria belonging to the family Caulobacteraceae. J Cell Biol 23, 587–597.[CrossRef]
    [Google Scholar]
  24. Smibert, M. & Krieg, N. ( 1981; ). In Manual of Methods for General Microbiology, pp. 409–443. Edited by R. Gerhardt. Washington, DC: American Society for Microbiology.
  25. Spurr, A. R. ( 1969; ). A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 28, 31–43.
    [Google Scholar]
  26. Stahl, D. A., Key, R., Flesher, B. & Smit, J. ( 1992; ). The phylogeny of marine and freshwater caulobacters reflects their habitat. J Bacteriol 174, 2193–2198.
    [Google Scholar]
  27. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  28. Umbreit, T. H. & Pate, J. L. ( 1978; ). Characterization of the holdfast region of wild-type cells and holdfast mutants of Asticcacaulis biprosthecum. Arch Microbiol 118, 157–168.[CrossRef]
    [Google Scholar]
  29. Vancanneyt, M., Witt, S., Abraham, W.-R., Kersters, K. & Frederickson, H. L. ( 1996; ). Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19, 528–540.[CrossRef]
    [Google Scholar]
  30. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  31. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 241–245. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. Chichester: Wiley.
  32. Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R. B., Abraham, W.-R., Lünsdorf, H. & Timmis, K. N. ( 1998; ). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48, 339–348.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02635-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02635-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1901-1906

A selection of 16S rDNA sequence stretches and helices where the five strains of exhibit diagnostic differences from related genera (Table I) and characteristics useful for differentiating the genus from related genera (Table II) are available when you click here. (PDF format)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error