1887

Abstract

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain 1445t, was isolated from a hot spring on Kunashir Island (Kuril Islands, Russia). Cells were motile rods (0.4–0.5×1.0–3.0 µm). The temperature range for growth at pH 7.8 was 46–80 °C, with optimum growth at 65 °C. The pH range for growth at 65 °C was pH 5.7–9.0, with optimum growth at pH 7.8. Growth was not observed at or below 40 °C, at or above 84 °C, at or below pH 5.4 or at or above pH 9.5. The isolate degraded a wide range of substrates including starch, cellulose and cellulose derivatives. Elemental sulfur stimulated growth, but sodium sulfate, sulfite and thiosulfate did not. DNA G+C content was 31 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain 1445t belonged to the genus . 16S rRNA gene sequence similarities with strains of other species of the genus were 94.9–98.3 %; the type strain of was the closest relative of strain 1445t. DNA–DNA hybridization of strain 1445t and AB39 revealed a relatedness value of 20 %. Based on phylogenetic data and physiological properties of the isolate, a novel species, designated sp. nov., is proposed with strain 1445t ( = DSM 21630  = VKM B-2549) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.026070-0
2011-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2697.html?itemId=/content/journal/ijsem/10.1099/ijs.0.026070-0&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C.. ( 1996;). Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. . Int J Syst Bacteriol 46:, 265–269. [CrossRef][PubMed]
    [Google Scholar]
  2. Bergquist P. L., Gibbs M. D., Morris D. D., Te’o V. S. J., Saul D. J., Morgan H. W.. ( 1999;). Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. . FEMS Microbiol Ecol 28:, 99–110. [CrossRef]
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A.. ( 1990;). Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. . Arch Microbiol 153:, 151–155. [CrossRef]
    [Google Scholar]
  4. Cai J., Wang Y., Liu D., Zeng Y., Xue Y., Ma Y., Feng Y.. ( 2007;). Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. . Int J Syst Evol Microbiol 57:, 2333–2336. [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Friedrich A. B., Antranikian G.. ( 1996;). Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. . Appl Environ Microbiol 62:, 2875–2882.
    [Google Scholar]
  9. Huber R., Hannig M.. ( 2006;). Thermotogales. . Prokaryotes 7:, 899–922. [CrossRef]
    [Google Scholar]
  10. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O.. ( 1990;). Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. . Arch Microbiol 154:, 105–111. [CrossRef]
    [Google Scholar]
  11. Kevbrin V. V., Zavarzin G. A.. ( 1992;). The effect of sulfur compounds on growth of the halophilic homoacetic bacterium Acetohalobium arabaticum. . Microbiology (English translation of Mikrobiologiia) 61:, 563–567.
    [Google Scholar]
  12. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  13. Miroshnichenko M. L., Kublanov I. V., Kostrikina N. A., Tourova T. P., Kolganova T. V., Birkeland N. K., Bonch-Osmolovskaya E. A.. ( 2008;). Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. . Int J Syst Evol Microbiol 58:, 1492–1496. [CrossRef][PubMed]
    [Google Scholar]
  14. Park D.. ( 2007;). Genomic DNA isolation from different biological materials. . In Methods in Molecular Biology, vol. 353, Protocols for Nucleic Acid Analysis by Nonradioactive Probes, , 2nd edn., pp. 3–13. Edited by Hilario E., Mackay J... Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  15. Patel B. K. C., Morgan H. W., Daniel R. M.. ( 1985;). Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. . Arch Microbiol 141:, 63–69. [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A.. ( 2002;). Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. . Int J Syst Evol Microbiol 52:, 1961–1967. [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  20. Trüper H. G., Schlegel H. G.. ( 1964;). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. . Antonie van Leeuwenhoek 30:, 225–238. [CrossRef][PubMed]
    [Google Scholar]
  21. Woese C. R., Kandler O., Wheelis M. L.. ( 1990;). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. . Proc Natl Acad Sci U S A 87:, 4576–4579. [CrossRef][PubMed]
    [Google Scholar]
  22. Wolin E. A., Wolin M. J., Wolfe R. S.. ( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.026070-0
Loading
/content/journal/ijsem/10.1099/ijs.0.026070-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error