1887

Abstract

An overview of the controversial proposal for the major eukaryote taxon ‘Excavata’ is presented. Excavata is predicted to include at least ten distinct groups: jakobids, , , , retortamonads, diplomonads, Heterolobosea, oxymonads, parabasalids and Euglenozoa. These ‘excavates' have broadly similar flagellar apparatus organizations, for which a ‘universal’ terminology is provided. Most, but not all, of these organisms share a distinctive suspension-feeding groove, as well as some or all of a set of seven other proposed cytoskeletal apomorphies. Cladistic analyses of morphological data do not resolve high-level relationships within Excavata. Excavate-rich molecular phylogenies recover some robust clades, but do not support or strongly refute the monophyly of Excavata. A partial classification for excavates is presented, with phylogenetic diagnoses for Excavata and for two novel taxon names, Fornicata (, retortamonads, diplomonads) and Preaxostyla (, oxymonads).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02578-0
2003-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531759.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02578-0&mimeType=html&fmt=ahah

References

  1. Archibald, J. M., O'Kelly, C. J. & Doolittle, W. F. ( 2002; ). The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. Mol Biol Evol 19, 422–431.[CrossRef]
    [Google Scholar]
  2. Balamuth, W., Bradbury, P. C. & Schuster, F. L. ( 1983; ). Ultrastructure of the amoeboflagellate Tetramitus rostratus. J Protozool 30, 445–455.[CrossRef]
    [Google Scholar]
  3. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. ( 2000; ). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.[CrossRef]
    [Google Scholar]
  4. Bernard, C., Simpson, A. G. B. & Patterson, D. J. ( 1997; ). An ultrastructural study of a free-living retortamonad, Chilomastix cuspidata (Larsen and Patterson, 1990 ) n. comb. (Retortamonadida, Protista). Eur J Protistol 33, 254–265.[CrossRef]
    [Google Scholar]
  5. Bernard, C., Simpson, A. G. B. & Patterson, D. J. ( 2000; ). Some free-living flagellates (Protista) from anoxic habitats. Ophelia 52, 113–142.[CrossRef]
    [Google Scholar]
  6. Broers, C. A. M., Stumm, C. K., Vogels, G. D. & Brugerolle, G. ( 1990; ). Psalteriomonas lanterna gen. nov., sp. nov., a free-living amoeboflagellate isolated from freshwater anaerobic sediments. Eur J Protistol 25, 369–380.[CrossRef]
    [Google Scholar]
  7. Broers, C. A. M., Meijers, H. H. M., Symens, J. C., Stumm, C. K., Vogels, G. D. & Brugerolle, G. ( 1993; ). Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum. Eur J Protistol 29, 98–105.[CrossRef]
    [Google Scholar]
  8. Brugerolle, G. ( 1970; ). Sur l'ultrastructure et la position systématique de Pyrsonympha vertens (Zooflagellata, Pyrsonymphina). C R Acad Sci (Paris) 270, 966–969 (in French).
    [Google Scholar]
  9. Brugerolle, G. ( 1973; ). Etude ultrastructurale du trophozoite et du kyste chez le genre Chilomastix Aléxéieff, 1910 (Zoomastigophorea, Retortamonadida Grassé, 1952). J Protozool 20, 574–585 (in French).[CrossRef]
    [Google Scholar]
  10. Brugerolle, G. ( 1975a; ). Etude ultrastructurale du genre Enteromonas da Fonseca (Zoomastigophorea) et révision de l'ordre des Diplomonadida Wenyon. J Protozool 22, 468–475 (in French).[CrossRef]
    [Google Scholar]
  11. Brugerolle, G. ( 1975b; ). Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). V. Nouvelle interprétation de l'organisation cellulaire de Giardia. Protistologica 11, 99–109 (in French).
    [Google Scholar]
  12. Brugerolle, G. ( 1975c; ). Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). VI. Caractères généraux des diplozoaires. Protistologica 11, 111–118 (in French).
    [Google Scholar]
  13. Brugerolle, G. ( 1977; ). Ultrastructure du genre Retortamonas Grassi 1879 (Zoomastigophorea, Retortamonadida Wenrich 1931). Protistologica 13, 233–240 (in French).
    [Google Scholar]
  14. Brugerolle, G. ( 1991a; ). Flagellar and cytoskeletal systems in amitochondrial flagellates: Archamoeba, Metamonada and Parabasala. Protoplasma 164, 70–90.[CrossRef]
    [Google Scholar]
  15. Brugerolle, G. ( 1991b; ). Cell organization in free-living amitochondriate heterotrophic flagellates. In The Biology of Free-Living Heterotrophic Flagellates, pp. 133–148. Edited by D. J. Patterson and J. Larsen. Oxford: Clarendon Press.
  16. Brugerolle, G. ( 1992; ). Flagellar apparatus duplication and partition, flagellar transformation during division in Entosiphon sulcatum. Biosystems 28, 203–209.[CrossRef]
    [Google Scholar]
  17. Brugerolle, G. & Taylor, F. J. R. ( 1977; ). Taxonomy, cytology and evolution of the Mastigophora. In Proceedings of the 5th International Congress of Protozoology, pp. 14–28. Edited by S. H. Hutner. New York: Society of Protozoologists.
  18. Brugerolle, G. & Patterson, D. J. ( 1997; ). Ultrastructure of Trimastix convexa Hollande, an amitochondriate anaerobic flagellate with a previously undescribed organisation. Eur J Protistol 33, 121–130.[CrossRef]
    [Google Scholar]
  19. Brugerolle, G. & Lee, J. J. ( 2000a; ). Order Oxymonadida. In The Illustrated Guide to the Protozoa, 2nd edn, pp. 1186–1195. Edited by J. J. Lee, G. F. Leedale and P. Bradbury. Lawrence, KS: Society of Protozoologists.
  20. Brugerolle, G. & Lee, J. J. ( 2000b; ). Phylum Parabasalia. In The Illustrated Guide to the Protozoa, 2nd edn, pp. 1196–1249. Edited by J. J. Lee, G. F. Leedale and P. Bradbury. Lawrence, KS: Society of Protozoologists.
  21. Brugerolle, G. & Müller, M. ( 2000; ). Amitochondriate flagellates. In Flagellates: Unity, Diversity and Evolution, pp. 166–189. Edited by J. C. Green and B. S. C. Leadbeater. London: Taylor & Francis.
  22. Brugerolle, G. & Regnault, J.-P. ( 2001; ). Ultrastructure of the enteromonad flagellate Caviomonas mobilis. Parasitol Res 87, 662–665.[CrossRef]
    [Google Scholar]
  23. Brugerolle, G., Joyon, L. & Öktem, N. ( 1973a; ). Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa Dangeard 1910). I. Étude ultrastructurale du genre Trepomonas (Dujardin). Protistologica 9, 339–348 (in French).
    [Google Scholar]
  24. Brugerolle, G., Joyon, L. & Öktem, N. ( 1973b; ). Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa Dangeard 1910). II. Étude ultrastructurale du genre Spironucleus (Lavier 1936). Protistologica 9, 495–502 (in French).
    [Google Scholar]
  25. Brugerolle, G., Joyon, L. & Öktem, N. ( 1974; ). Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa Dangeard 1910). IV. Étude ultrastructurale du genre Octomitus (Prowazek 1904). Protistologica 10, 457–463 (in French).
    [Google Scholar]
  26. Brugerolle, G., Kunstyr, I., Senaud, J. & Friedhoff, K. T. ( 1980; ). Fine structure of trophozoites and cysts of the pathogenic diplomonad Spironucleus muris. Z Parasitenkd 62, 47–61.[CrossRef]
    [Google Scholar]
  27. Brugerolle, G., Bricheux, G., Philippe, H. & Coffe, G. ( 2002; ). Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153, 59–70.[CrossRef]
    [Google Scholar]
  28. Cavalier-Smith, T. ( 1981; ). Eukaryote kingdoms: seven or nine? Biosystems 14, 461–481.[CrossRef]
    [Google Scholar]
  29. Cavalier-Smith, T. ( 1983; ). A 6-kingdom classification and a unified phylogeny. In Endocytobiology II, pp. 1027–1034. Edited by W. Schwemmler and H. E. A. Schenk. Berlin: Walter de Gruyter.
  30. Cavalier-Smith, T. ( 1987; ). Eukaryotes with no mitochondria. Nature 326, 332–333.[CrossRef]
    [Google Scholar]
  31. Cavalier-Smith, T. ( 1991; ). Cell diversification in heterotrophic flagellates. In The Biology of Free-Living Heterotrophic Flagellates, pp. 113–131. Edited by D. J. Patterson and J. Larsen. Oxford: Clarendon Press.
  32. Cavalier-Smith, T. ( 1992a; ). Percolozoa and the symbiotic origin of the metakaryote cell. In Endocytobiology V, pp. 399–406. Edited by S. Sato, M. Ishida and H. Ishikawa. Tübingen, Germany: Tübingen University Press.
  33. Cavalier-Smith, T. ( 1992b; ). Origin of the cytoskeleton. In The Origin and Evolution of the Cell, pp. 79–106. Edited by H. Hartman and K. Matsumo. Singapore: World Scientific.
  34. Cavalier-Smith, T. ( 1993; ). Kingdom Protozoa and its 18 phyla. Microbiol Rev 57, 953–994.
    [Google Scholar]
  35. Cavalier-Smith, T. ( 1997; ). Amoeboflagellates and mitochondrial cristae in eukaryote evolution: megasystematics of the new protozoan subkingdoms Eozoa and Neozoa. Arch Protistenkd 147, 237–258.[CrossRef]
    [Google Scholar]
  36. Cavalier-Smith, T. ( 1998; ). A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73, 203–266.[CrossRef]
    [Google Scholar]
  37. Cavalier-Smith, T. ( 1999; ). Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46, 347–366.[CrossRef]
    [Google Scholar]
  38. Cavalier-Smith, T. ( 2000; ). Flagellate megaevolution: the basis for eukaryote diversification. In The Flagellates: Unity, Diversity and Evolution, pp. 361–390. Edited by J. C. Green and B. S. C. Leadbeater. London: Taylor & Francis.
  39. Cavalier-Smith, T. ( 2002; ). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52, 297–354.
    [Google Scholar]
  40. Corliss, J. O. ( 1994; ). An interim utilitarian (“user-friendly”) hierarchical classification and characterization of the Protists. Acta Protozool 33, 1–51.
    [Google Scholar]
  41. Dacks, J. & Roger, A. J. ( 1999; ). The first sexual lineage and the relevance of facultative sex. J Mol Evol 48, 779–783.[CrossRef]
    [Google Scholar]
  42. Dacks, J. B., Silberman, J. D., Simpson, A. G. B., Moriya, S., Kudo, T., Ohkuma, M. & Redfield, R. ( 2001; ). Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18, 1034–1044.[CrossRef]
    [Google Scholar]
  43. de Queiroz, K. & Gauthier, J. ( 1992; ). Phylogenetic taxonomy. Annu Rev Ecol Syst 23, 449–480.[CrossRef]
    [Google Scholar]
  44. Desser, S. S., Hong, H., Siddall, M. E. & Barta, J. R. ( 1993; ). An ultrastructural study of Brugerolleia algonquinensis gen. nov., sp. nov. (Diplomonadida; Diplomonadina), a flagellate parasite from the blood of frogs from Ontario, Canada. Eur J Protistol 29, 72–80.[CrossRef]
    [Google Scholar]
  45. Edgcomb, V. P., Roger, A. J., Simpson, A. G. B., Kysela, D. T. & Sogin, M. L. ( 2001; ). Evolutionary relationships among “jakobid” flagellates as indicated by alpha- and beta-tubulin phylogenies. Mol Biol Evol 18, 514–522.[CrossRef]
    [Google Scholar]
  46. Embley, T. M. & Hirt, R. P. ( 1998; ). Early branching eukaryotes? Curr Opin Genet Dev 8, 624–629.[CrossRef]
    [Google Scholar]
  47. Eriksson, T. ( 1999; ). autodecay 4.0. Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, Sweden.
  48. Eyden, B. P. & Vickerman, K. ( 1975; ). Ultrastructure and vacuolar movements in the free-living diplomonad Trepomonas agilis Klebs. J Protozool 22, 54–66.[CrossRef]
    [Google Scholar]
  49. Farmer, M. A. & Triemer, R. E. ( 1988; ). Flagellar systems in the euglenoid flagellates. Biosystems 21, 283–291.[CrossRef]
    [Google Scholar]
  50. Fenchel, T. & Patterson, D. J. ( 1986; ). Percolomonas cosmopolitus (Ruinen) n. gen., a new type of filter feeding flagellate from marine plankton. J Mar Biol Assoc U K 66, 465–482.[CrossRef]
    [Google Scholar]
  51. Fenchel, T. & Finlay, B. J. ( 1995; ). Ecology and Evolution in Anoxic Worlds. Oxford: Oxford University Press.
  52. Flavin, M. & Nerad, T. A. ( 1993; ). Reclinomonas americana n. g., n. sp., a new freshwater heterotrophic flagellate. J Eukaryot Microbiol 40, 172–179.[CrossRef]
    [Google Scholar]
  53. Friend, D. S. ( 1966; ). The fine structure of Giardia muris. J Cell Biol 29, 317–332.[CrossRef]
    [Google Scholar]
  54. Grassé, P.-P. ( 1952; ). Classe des Zooflagellés: Zooflagellata ou Zoomastigina. In Traité de Zoologie, vol. 1, fasc. 1, pp. 963–982. Edited by P.-P. Grassé. Paris: Masson (in French).
  55. Hinkle, G. & Sogin, M. L. ( 1993; ). The evolution of the Vahlkampfiidae as deduced from 16S-like ribosomal RNA analysis. J Eukaryot Microbiol 40, 599–603.[CrossRef]
    [Google Scholar]
  56. Hirt, R. P., Logsdon, J. M., Jr, Healy, B., Dorey, M. W., Doolittle, W. F. & Embley, T. M. ( 1999; ). Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A 96, 580–585.[CrossRef]
    [Google Scholar]
  57. Holberton, D. V. ( 1973; ). Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13, 11–41.
    [Google Scholar]
  58. Horner, D. S. & Embley, T. M. ( 2001; ). Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 18, 1970–1975.[CrossRef]
    [Google Scholar]
  59. Keeling, P. J. & Doolittle, W. F. ( 1997; ). Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol 14, 895–901.[CrossRef]
    [Google Scholar]
  60. Keeling, P. J. & Leander, B. S. ( 2003; ). Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J Mol Biol 326, 1337–1349.[CrossRef]
    [Google Scholar]
  61. Kulda, J., & Nohynková, E. ( 1978; ). Flagellates of the human intestine and of intestines of other species. In Parasitic Protozoa, vol. 2, pp. 1–138. Edited by J. P. Kreier. New York: Academic Press.
  62. Leander, B. S. & Keeling, P. J. ( 2003; ). Morphostasis in alveolate evolution. Trends Ecol Evol 18, 395–402.[CrossRef]
    [Google Scholar]
  63. Leander, B. S., Triemer, R. E. & Farmer, M. A. ( 2001; ). Character evolution in heterotrophic euglenids. Eur J Protistol 37, 337–356.[CrossRef]
    [Google Scholar]
  64. Lipscomb, D. L. ( 1989; ). Relationships among the eukaryotes. In The Hierarchy of Life, pp. 161–178. Edited by B. Fernholm, K. Bremer and H. Jörnvall. Amsterdam: Elsevier.
  65. Mignot, J. P. & Brugerolle, G. ( 1975; ). Etude ultrastructurale du flagelle phagotrophe Colponema loxodes Stein. Protistologica 11, 429–444 (in French).
    [Google Scholar]
  66. Moestrup, Ø. ( 2000; ). The flagellate cytoskeleton: introduction of a general terminology for microtubular flagellar roots in protists. In The Flagellates: Unity, Diversity and Evolution. Edited by J. C. Green and B. S. C. Leadbeater. London: Taylor & Francis.
  67. Moriya, S., Dacks, J. B., Takagi, A., Noda, S., Ohkuma, M., Doolittle, W. F. & Kudo, T. ( 2003; ). Molecular phylogeny of three oxymonad genera: Pyrsonympha, Dinenympha and Oxymonas. J Eukaryot Microbiol 50, 190–197.[CrossRef]
    [Google Scholar]
  68. Morrison, H. G., Roger, A. J., Nystul, T. G., Gillin, F. D. & Sogin, M. L. ( 2001; ). Giardia lamblia expresses a proteobacterial-like DnaK homolog. Mol Biol Evol 18, 530–541.[CrossRef]
    [Google Scholar]
  69. Mylnikov, A. P. ( 1989; ). The fine structure and systematic position of Histiona aroides (Bicoecales). Bot Zh 74, 184–189 (in Russian).
    [Google Scholar]
  70. Mylnikov, A. P. ( 1991; ). Diversity of flagellates without mitochondria. In The Biology of Free-Living Heterotrophic Flagellates, pp. 149–158. Edited by D. J. Patterson and J. Larsen. Oxford: Clarendon Press.
  71. Nielsen, M. H., Ludvik, J. & Nielsen, R. ( 1966; ). On the ultrastructure of Trichomonas vaginalis Donné. J Microsc (Paris) 5, 229–250.
    [Google Scholar]
  72. O'Kelly, C. J. ( 1993; ). The jakobid flagellates: structural features of Jakoba, Reclinomonas and Histiona and implications for the early diversification of eukaryotes. J Eukaryot Microbiol 40, 627–636.[CrossRef]
    [Google Scholar]
  73. O'Kelly, C. J. ( 1997; ). Ultrastructure of trophozoites, zoospores and cysts of Reclinomonas americana Flavin & Nerad, 1993 (Protista incertae sedis: Histionidae). Eur J Protistol 33, 337–348.[CrossRef]
    [Google Scholar]
  74. O'Kelly, C. J. & Nerad, T. A. ( 1999; ). Malawimonas jakobiformis n. gen., n. sp. (Malawimonadidae fam. nov.): a Jakoba-like heterotrophic nanoflagellate with discoidal mitochondrial cristae. J Eukaryot Microbiol 46, 522–531.[CrossRef]
    [Google Scholar]
  75. O'Kelly, C. J., Farmer, M. A. & Nerad, T. A. ( 1999; ). Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. Protist 150, 149–162.[CrossRef]
    [Google Scholar]
  76. Page, F. C. & Blanton, R. L. ( 1985; ). The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21, 121–132.
    [Google Scholar]
  77. Patterson, D. J. ( 1988; ). The evolution of protozoa. Mem Inst Oswaldo Cruz 83 (Suppl. 1), 580–600.[CrossRef]
    [Google Scholar]
  78. Patterson, D. J. ( 1990; ). Jakoba libera ( Ruinen, 1938 ), a heterotrophic flagellate from deep oceanic sediments. J Mar Biol Assoc U K 70, 381–393.[CrossRef]
    [Google Scholar]
  79. Patterson, D. J. ( 1994; ). Protozoa: evolution and systematics. In Progress in Protozoology, pp. 1–14. Edited by K. Hausmann and N. Hülsmann. Berlin: Gustav Fischer Verlag.
  80. Patterson, D. J. ( 1999; ). The diversity of eukaryotes. Am Nat 154 (Suppl.), S96–S124.[CrossRef]
    [Google Scholar]
  81. Patterson, D. J. & Zölffel, M. ( 1991; ). Heterotrophic flagellates of uncertain taxonomic position. In The Biology of Free-Living Heterotrophic Flagellates, pp. 427–475. Edited by D. J. Patterson and J. Larsen. Oxford: Clarendon Press.
  82. Patterson, D. J., Rogerson, A. & Vørs, N. ( 2000a; ). Class Heterolobosea. In The Illustrated Guide to the Protozoa, 2nd edn, pp. 1104–1111. Edited by J. J. Lee, G. F. Leedale and P. Bradbury. Lawrence, KS: Society of Protozoologists.
  83. Patterson, D. J., Vørs, N., Simpson, A. G. B. & O'Kelly, C. J. ( 2000b; ). Residual free-living and predatory heterotrophic flagellates. In The Illustrated Guide to the Protozoa, 2nd edn, pp. 1302–1328. Edited by J. J. Lee, G. F. Leedale and P. Bradbury. Lawrence, KS: Society of Protozoologists.
  84. Philippe, H. & Adoutte, A. ( 1998; ). The molecular phylogeny of Eukaryota: solid facts and uncertainties. In Evolutionary Relationships Among Protozoa, pp. 25–56. Edited by G. H. Coombs, K. Vickerman, M. A. Sleigh and A. Warren. London: Chapman & Hall.
  85. Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D., Müller, M. & Le Guyader, H. ( 2000; ). Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc R Soc Lond B Biol Sci 267, 1213–1221.[CrossRef]
    [Google Scholar]
  86. Radek, R. ( 1994; ). Monocercomonoides termitis n. sp., an oxymonad from the lower termite Kalotermes sinaicus. Arch Protistenkd 144, 373–382.[CrossRef]
    [Google Scholar]
  87. Roger, A. J. ( 1999; ). Reconstructing early events in eukaryotic evolution. Am Nat 154 (Suppl.), S146–S163.[CrossRef]
    [Google Scholar]
  88. Roger, A. J., Svärd, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D. & Sogin, M. L. ( 1998; ). A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95, 229–234.[CrossRef]
    [Google Scholar]
  89. Ruinen, J. ( 1938; ). Notizen uber Salzflagellaten. II. Uber die Verbreitung der Salzflagellaten. Arch Protistenkd 90, 210–258 (in German).
    [Google Scholar]
  90. Siddall, M. E., Hong, H. & Desser, S. S. ( 1992; ). Phylogenetic analysis of the Diplomonadida (Wenyon, 1926) Brugerolle, 1975: evidence for heterochrony in protozoa and against Giardia lamblia as a “missing link”. J Protozool 39, 361–367.[CrossRef]
    [Google Scholar]
  91. Silberman, J. D., Simpson, A. G. B., Kulda, J., Cepicka, I., Hampl, V., Johnson, P. J. & Roger, A. J. ( 2002; ). Retortamonad flagellates are closely related to diplomonads – implications for the history of mitochondrial function in eukaryote evolution. Mol Biol Evol 19, 777–786.[CrossRef]
    [Google Scholar]
  92. Simpson, A. G. B. ( 1997; ). The identity and composition of the Euglenozoa. Arch Protistenkd 148, 318–328.[CrossRef]
    [Google Scholar]
  93. Simpson, A. G. B. & Patterson, D. J. ( 1999; ). The ultrastructure of Carpediemonas membranifera (Eukaryota), with reference to the excavate hypothesis. Eur J Protistol 35, 353–370.[CrossRef]
    [Google Scholar]
  94. Simpson, A. G. B. & Patterson, D. J. ( 2001; ). On core jakobids and excavate taxa: the ultrastructure of Jakoba incarcerata. J Eukaryot Microbiol 48, 480–492.[CrossRef]
    [Google Scholar]
  95. Simpson, A. G. B., van den Hoff, J., Bernard, C., Burton, H. R. & Patterson, D. J. ( 1997; ). The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis, Fenchel et al. Arch Protistenkd 147, 213–225.[CrossRef]
    [Google Scholar]
  96. Simpson, A. G. B., Bernard, C. & Patterson, D. J. ( 2000; ). The ultrastructure of Trimastix marina Kent, 1880 (Eukaryota), an excavate flagellate. Eur J Protistol 36, 229–252.[CrossRef]
    [Google Scholar]
  97. Simpson, A. G. B., MacQuarrie, E. K. & Roger, A. J. ( 2002a; ). Early origin of canonical introns. Nature 419, 270.[CrossRef]
    [Google Scholar]
  98. Simpson, A. G. B., Radek, R., Dacks, J. B. & O'Kelly, C. J. ( 2002b; ). How oxymonads lost their groove: an ultrastructural comparison of Monocercomonoides and excavate taxa. J Eukaryot Microbiol 49, 239–248.[CrossRef]
    [Google Scholar]
  99. Simpson, A. G. B., Roger, A. J., Silberman, J. D., Leipe, D. D., Edgcomb, V. P., Jermiin, L. S., Patterson, D. J. & Sogin, M. L. ( 2002c; ). Evolutionary history of ‘early diverging’ eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. Mol Biol Evol 19, 1782–1791.[CrossRef]
    [Google Scholar]
  100. Sleigh, M. A. ( 1988; ). Flagellar root maps allow speculative comparisons of root patterns and of their ontogeny. Biosystems 21, 277–282.[CrossRef]
    [Google Scholar]
  101. Sleigh, M. A. ( 1989; ). Protozoa and other Protists. London: Edward Arnold.
  102. Sogin, M. L. ( 1989; ). Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Am Zool 29, 487–499.
    [Google Scholar]
  103. Sterud, E., Mo, T. A. & Poppe, T. T. ( 1997; ). Ultrastructure of Spironucleus barkhanus n. sp. (Diplomonadida: Hexamitidae) from grayling Thymallus thymallus (L.) (Salmonidae) and Atlantic salmon Salmo salar L. (Salmonidae). J Eukaryot Microbiol 44, 399–407.[CrossRef]
    [Google Scholar]
  104. Stiller, J. W. & Hall, B. D. ( 1999; ). Long-branch attraction and the rDNA model of early eukaryotic evolution. Mol Biol Evol 16, 1270–1279.[CrossRef]
    [Google Scholar]
  105. Swofford, D. L. ( 2000; ). paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  106. Tachezy, J., Sánchez, L. B. & Müller, M. ( 2001; ). Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18, 1919–1928.[CrossRef]
    [Google Scholar]
  107. Tovar, J., Leon-Avila, G., Sánchez, L. B., Sutak, R., Tachezy, J., van der Geizen, M., Hernández, M., Müller, M. & Lucocq, J. M. ( 2003; ). Mitochondrial remnant organelles of Giardia function in iron-sulphur cluster metabolism. Nature (in press).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02578-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02578-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error