1887

Abstract

Taxonomic studies were performed on four strains (D-1/D-an/II, C/C-an/B1, A-1/C-an/C1 and A-1/C-an/I) of anaerobic, Gram-positive, spore-forming bacteria originally isolated from a mat sample retrieved from a shallow, moated area around Lake Fryxell, an Antarctic freshwater lake. Phylogenetic analyses based on 16S rRNA gene sequence data indicated that these strains are affiliated with cluster I clostridia and form a coherent group with and . Similarity values among 16S rRNA gene sequences within this assemblage ranged between 96·7 and 99·8 %. Despite the close phylogenetic relationship, several distinguishing phenotypic traits were found among the novel strains using a polyphasic approach. All strains were psychrophilic, but the temperature optimum for growth differed markedly, ranging from 4 to 16 °C. In addition, substrate utilization patterns, fermentation end products, cellular fatty acid profiles and morphological traits enabled a clear differentiation between the strains. DNA–DNA hybridization experiments revealed that each of the four novel strains represents a distinct species, with DNA–DNA similarity values to related strains in the range 16–62 %. In contrast, the type strains of and shared 79 % DNA–DNA similarity, indicating a close relationship at the species level. On the basis of genetic and phenotypic properties, it is proposed to designate four novel species of the genus to harbour the newly isolated strains: sp. nov. (type strain D-1/D-an/II=DSM 14204 =ATCC BAA-579), sp. nov. (type strain C/C-an/B1=DSM 14205 =ATCC BAA-580), sp. nov. (type strain A-1/C-an/C1=DSM 14206 =ATCC BAA-581) and sp. nov. (type strain A-1/C-an/I=DSM 14207 =ATCC BAA-582). It is also proposed to unite and under . The subspecies subsp subsp. nov. is established, represented by strain ATCC 51254 (=DSM 14864). The type strain of subsp. remains NCIMB 12511 (=DSM 8809).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02554-0
2003-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531019.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02554-0&mimeType=html&fmt=ahah

References

  1. Brambilla, E., Hippe, H., Hagelstein, A., Tindall, B. J. & Stackebrandt, E. ( 2001; ). 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5, 23–33.[CrossRef]
    [Google Scholar]
  2. Bruce, J. L. ( 1996; ). Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50, 77–81.
    [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  4. Collins, M. D., Rodrigues, U. M., Dainty, R. H., Edwards, R. A. & Roberts, T. A. ( 1992; ). Taxonomic studies on a psychrophilic Clostridium from vacuum-packed beef: description of Clostridium estertheticum sp. nov. FEMS Microbiol Lett 96, 235–240.[CrossRef]
    [Google Scholar]
  5. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef]
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 143–153.[CrossRef]
    [Google Scholar]
  7. DSMZ ( 2001; ). Catalogue of Strains, 7th edn. Braunschweig: Deutsche Sammlung von Mikroorganismen und Zellkulturen.
  8. Frühling, A., Schumann, P., Hippe, H., Sträubler, B. & Stackebrandt, E. ( 2002; ). Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov. Int J Syst Evol Microbiol 52, 1171–1176.[CrossRef]
    [Google Scholar]
  9. Heimbrook, M. E., Wang, W. L. L. & Campbell, G. ( 1989; ). Staining bacterial flagella easily. J Clin Microbiol 27, 2612–2615.
    [Google Scholar]
  10. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  11. Hungate, R. E. ( 1950; ). The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14, 1–49.
    [Google Scholar]
  12. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  13. Jahnke, K. D. ( 1992; ). Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  14. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  15. Kalchayanand, N., Ray, B. & Field, R. A. ( 1993; ). Characteristics of psychrotrophic Clostridium laramie causing spoilage of vacuum-packaged refrigerated fresh and roasted beef. J Food Prot 56, 13–17.
    [Google Scholar]
  16. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  17. Kroppenstedt, R. M. ( 1985; ). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics, pp. 173–179. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  18. Lang, E. & Lang, H. ( 1972; ). Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Z Anal Chem 260, 8–10.[CrossRef]
    [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  20. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  21. Morita, R. Y. ( 1975; ). Psychrophilic bacteria. Bacteriol Rev 39, 144–167.
    [Google Scholar]
  22. Mountfort, D. O., Rainey, F. A., Burghardt, J., Kaspar, H. F. & Stackebrandt, E. ( 1997; ). Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo Ice Shelf, Antarctica. Arch Microbiol 167, 54–60.[CrossRef]
    [Google Scholar]
  23. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  24. Ratkowsky, D. A., Olley, J., McMeekin, T. A. & Ball, A. ( 1982; ). Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149, 1–5.
    [Google Scholar]
  25. Rosselló-Mora, R. & Amann, R. ( 2001; ). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef]
    [Google Scholar]
  26. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  27. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE: MIDI.
  28. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  29. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  30. Steer, T., Collins, M. D., Gibson, G. R., Hippe, H. & Lawson, P. A. ( 2001; ). Clostridium hathewayi sp. nov., from human faeces. Syst Appl Microbiol 24, 353–357.[CrossRef]
    [Google Scholar]
  31. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  32. Wilde, E., Collins, M. D. & Hippe, H. ( 1997; ). Clostridium pascui sp. nov., a new glutamate-fermenting sporeformer from a pasture in Pakistan. Int J Syst Bacteriol 47, 164–170.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02554-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02554-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1019 - 1029

Temperature profiles of the strains studied displayed as Ratkowsky-type plots. Growth-rate constants were calculated in exponentially growing cultures by linear regression of ln(OD ) as a function of time. The large graph shows the relationship between the square root of the growth-rate constant measured at suboptimal temperatures and at the absolute temperature. Dashed lines result from linear regression and can be used to estimate growth rates at intermediate temperatures from the minimum to just below the optimum. Ratkowsky plots of data obtained from the complete temperature range studied are shown as an inset on the left. Graphically determined temperature optima are marked by arrows. [PDF](15 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error