1887

Abstract

A thermo-acidophilic endospore-forming bacterium was isolated from a mixed fruit juice. The organism, strain 3A, was rod-shaped, grew aerobically at 30–60 °C (optimum 45–50 °C), pH 3·0–6·0 (optimum pH 4·0–4·5) and produced acid from various sugars. It contained menaquinone-7 as the major isoprenoid quinone. The G+C content of the DNA was 53·1 mol%. The predominant cellular fatty acids of the strain were iso-C, anteiso-C, iso-C, iso-C and anteiso-C, but -alicyclic fatty acids, which are characteristic of the genus , were not found in the strain. Phylogenetic analyses based on both 16S rRNA and (DNA gyrase B subunit gene) gene sequences showed that strain 3A falls into the cluster, validated by significant bootstrap values. However, strain 3A did not show a close relationship to the other species of the cluster. The level of 16S rDNA similarity between strain 3A and other strains of the cluster was between 92·5 and 95·5 %. The level of sequence similarity between strain 3A and other strains of the cluster was between 68·5 and 74·4 %. DNA–DNA hybridization values between strain 3A and phylogenetically related strains of the genera , and were under 13 %, indicating that strain 3A represents a distinct species. On the basis of these results, strain 3A should be classified as a novel species. The name is proposed for this organism. The type strain of is strain 3A (=DSM 14955=IAM 14988).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02546-0
2003-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531537.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02546-0&mimeType=html&fmt=ahah

References

  1. Adachi, T., Mizuuchi, M., Robinson, E. A., Appella, E., O'Dea, M. H., Gellert, M. & Mizuuchi, K. ( 1987; ). DNA sequence of the E. coli gyrB gene: application of a new sequencing strategy. Nucleic Acids Res 15, 771–784.[CrossRef]
    [Google Scholar]
  2. Albuquerque, L., Rainey, F. A., Chung, A. P., Sunna, A., Nobre, M. F., Grote, R., Antranikian, G. & De Costa, M. S. ( 2000; ). Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int J Syst Evol Microbiol 50, 451–457.[CrossRef]
    [Google Scholar]
  3. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  4. Darland, G. & Brock, T. D. ( 1971; ). Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67, 9–15.[CrossRef]
    [Google Scholar]
  5. Deinhard, G., Blanz, P., Poralla, K. & Altan, E. ( 1987a; ). Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst Appl Microbiol 10, 47–53.[CrossRef]
    [Google Scholar]
  6. Deinhard, G., Saar, J., Krischke, W. & Poralla, K. ( 1987b; ). Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω-cycloheptane fatty acids. Syst Appl Microbiol 10, 68–73.[CrossRef]
    [Google Scholar]
  7. De Rosa, M., Gambacorta, A., Minale, L. & Bu'Lock, J. D. ( 1971; ). Cyclohexane fatty acids from a thermophilic bacterium. Chem Commun 1019, 1334.
    [Google Scholar]
  8. Dufresne, S., Bousquet, J., Boissinot, M. & Guay, R. ( 1996; ). Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46, 1056–1064.[CrossRef]
    [Google Scholar]
  9. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30, 783–791.
    [Google Scholar]
  11. Fortina, M. G., Pukall, R., Schumann, P., Mora, D., Parini, C., Manachini, P. L. & Stackebrandt, E. ( 2001; ). Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Anderson et al., 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51, 447–455.
    [Google Scholar]
  12. Golovacheva, R. S. & Karavaiko, G. I. ( 1979; ). Sulfobacillus – a new genus of spore-forming thermophilic bacteria. Microbiology (English translation of Mikrobiologiya) 47, 658–665.
    [Google Scholar]
  13. Goto, K., Omura, T., Hara, Y. & Sadaie, Y. ( 2000; ). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46, 1–8.[CrossRef]
    [Google Scholar]
  14. Goto, K., Matsubara, H., Mochida, K., Matsumura, T., Hara, Y., Niwa, M. & Yamasato, K. ( 2002a; ). Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω-cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52, 109–113.
    [Google Scholar]
  15. Goto, K., Tanimoto, Y., Tamura, T., Mochida, K., Arai, D., Asahara, M., Suzuki, M., Tanaka, H. & Inagaki, K. ( 2002b; ). Identification of thermoacidophilic bacteria and a new Alicyclobacillus genomic species isolated from acidic environments in Japan. Extremophiles 6, 333–340.[CrossRef]
    [Google Scholar]
  16. Goto, K., Mochida, K., Asahara, M., Suzuki, M. & Yokota, A. ( 2002c; ). Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol 48, 243–250.[CrossRef]
    [Google Scholar]
  17. Heyndrickx, M., Lebbe, L., Vancanneyt M. & 7 other authors ( 1997; ). A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al., 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended description of A. aneurinilyticus corrig., A. migulanus, and A. thermoaerophilus. Int J Syst Bacteriol 47, 808–817.[CrossRef]
    [Google Scholar]
  18. Hippchen, B., Roll, A. & Poralla, K. ( 1981; ). Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Arch Microbiol 129, 53–55.[CrossRef]
    [Google Scholar]
  19. Hiraishi, A., Inagaki, K., Tanimoto, Y., Iwasaki, M., Kishimoto, N. & Tanaka, H. ( 1997; ). Phylogenetic characterization of a new thermoacidophilic bacterium isolated from hot spring in Japan. J Gen Appl Microbiol 43, 295–304.[CrossRef]
    [Google Scholar]
  20. Kannenberg, E., Blume, A. & Poralla, K. ( 1984; ). Properties of ω-cyclohexane fatty acids in membranes. FEBS 172, 331–334.[CrossRef]
    [Google Scholar]
  21. Kasai, H., Tamura, T. & Harayama, S. ( 2000; ). Intrageneric relationship among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50, 127–134.[CrossRef]
    [Google Scholar]
  22. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequence. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  23. Krischke, W. & Poralla, K. ( 1990; ). Properties of Bacillus acidocaldarius mutants deficient in ω-cyclohexyl fatty acid biosynthesis. Arch Microbiol 153, 463–469.[CrossRef]
    [Google Scholar]
  24. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  25. Kusano, K., Yamada, H., Niwa, M. & Yamasato, K. ( 1997; ). Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant ω-cyclohexyl fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47, 825–831.[CrossRef]
    [Google Scholar]
  26. Lake, J. A. ( 1987; ). A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4, 167–191.
    [Google Scholar]
  27. Manachini, P. L., Fortina, M. G., Parini, C. & Craveri, R. ( 1985; ). Bacillus thermoruber sp. nov. rev., a red-pigmented thermophilic bacterium. Int J Syst Bacteriol 35, 493–496.[CrossRef]
    [Google Scholar]
  28. Matsubara, H., Goto, K., Matsumura, T., Mochida, K., Iwaki, M., Niwa, M. & Yamasato, K. ( 2002; ). Alicyclobacillus acidiphilus sp. nov., a new thermo-acidophilic ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 52, 1681–1685.[CrossRef]
    [Google Scholar]
  29. Moore, B. S., Walker, K., Tornus, I., Handa, S., Poralla, K. & Floss, H. G. ( 1997; ). Biosynthetic studies of ω-cycloheptyl fatty acids in Alicyclobacillus cycloheptanicus. Formation of cycloheptanecarboxylic acid from phenylacetic acid. J Org Chem 62, 2173–2185.[CrossRef]
    [Google Scholar]
  30. Nazina, T. N., Tourova, T. P., Poltaraus, A. B. & 8 other authors ( 2001; ). Taxonomic study of aerobic thermophilic bacilli: description of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51, 433–446.
    [Google Scholar]
  31. Nicolaus, B., Improta, R., Manca, C. M., Lama, L., Esposito, E. & Gambacorta, A. ( 1998; ). Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol 19, 133–141.[CrossRef]
    [Google Scholar]
  32. Norris, P. R., Clark, D. A., Owen, J. P. & Waterhouse, S. ( 1996; ). Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142, 775–783.[CrossRef]
    [Google Scholar]
  33. Poralla, K., Härtner, T. & Kannenberg, E. ( 1984; ). Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEBS Microbiol Lett 23, 253–256.[CrossRef]
    [Google Scholar]
  34. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: A new method for reconstruction of phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  35. Suzuki, K., Saito, K., Kawaguchi, A., Okuda, S. & Komagata, K. ( 1981; ). Occurrence of ω-cyclohexyl fatty acids in Curtobacterium pusillum strains. J Gen Appl 27, 261–266.[CrossRef]
    [Google Scholar]
  36. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  37. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: Improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 76, 4350–4354.
    [Google Scholar]
  38. Tomimura, E., Zeman, N. W., Frankiewicz, J. R. & Teague, W. M. ( 1990; ). Description of Bacillus naganoensis sp. nov. Int J Syst Bacteriol 40, 123–125.[CrossRef]
    [Google Scholar]
  39. Touzel, J. P., O'Donohue, M., Debeire, P., Samain, E. & Breton, C. ( 2000; ). Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50, 315–320.[CrossRef]
    [Google Scholar]
  40. Tsuruoka, N., Isono, Y., Shida, O., Hemmi, H., Nakayama, T. & Nishino, T. ( 2003; ). Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int J Syst Evol Microbiol 53, 1081–1084.[CrossRef]
    [Google Scholar]
  41. Uchino, F. & Doi, S. ( 1967; ). Acido-thermophilic bacteria from thermal waters. Agric Biol Chem 31, 817–822.[CrossRef]
    [Google Scholar]
  42. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  43. Wisotzkey, J. D., Jurtshuk, J. R. P., Fox, G. E., Deinhard, G. & Poralla, K. ( 1992; ). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42, 263–269.[CrossRef]
    [Google Scholar]
  44. Yamamoto, S. & Harayama, S. ( 1995; ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109.
    [Google Scholar]
  45. Yamazaki, K., Tezuka, H. & Shinano, H. ( 1996; ). Isolation and identification of Alicyclobacillus acidoterrestris from acid beverages. Biosci Biotechnol Biochem 60, 543–545.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02546-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02546-0
Loading

Data & Media loading...

Supplements

link text 

IMAGE

. Phylogenetic tree (constructed using the maximum-parsimony method) showing the phylogenetic position of strain 3A , based on 16S rDNA sequences.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error