1887

Abstract

The heterotrophic, epiphytic, symbiotic bacterial strain WH2K was previously isolated from a two-member culture in which it was attached to the heterocysts of a strain of (SSM-00). Analysis of its 16S rRNA gene sequence demonstrated that the symbiont was most closely related to the type strain of (96.9 % similarity), which belongs to the family within the order of the class . A polyphasic taxonomic study was performed on strain WH2K, which consisted of irregular rods (2–5 µm long, 0.2 µm wide) that appeared to be narrower at one pole. Optimal growth was obtained in complex media with 15 g sea salts l, at 18–34 °C (30 °C optimum) and at pH 6.0–8.0 (optimum pH 6.5). Unknown growth requirements were provided by small amounts of yeast extract but not by standard vitamin and trace metal solutions. Of the substrates tested, WH2K was able to utilize only acetate, pyruvate, malate and fumarate. Growth was observed only under aerobic and microaerobic conditions, and nitrate was not reduced. No photosynthetic pigments were detected under any of the growth conditions tested. The predominant fatty acids were a summed feature that comprises Cω7, Cω9, Cω12 or any combination of these (64.0 %) and an unidentified fatty acid of equivalent chain length 17.603 (13.5 %). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphoglycolipid, unknown lipids and an unidentified aminolipid. The only respiratory ubiquinone detected was Q-10. The DNA G+C content of the strain was 58.1 mol%. The organism can form a site-specific attached symbiotic relationship with a species of . Based on phylogenetic and phenotypic evidence, it is proposed that strain WH2K be classified within a novel species of the genus , for which the name sp. nov. is proposed. The type strain is WH2K ( = CCUG 56626  = NRRL B-59520).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025353-0
2011-10-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2439.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025353-0&mimeType=html&fmt=ahah

References

  1. Ahrens R. . ( 1968; ). Taxonomische Untersuchungen an sternbildenden Agrobacterium-Arten aus der westlichen Ostsee. . Kieler Forsch 24:, 147–173 (in German).
    [Google Scholar]
  2. Ashen J. B. , Goff L. J. . ( 1998; ). Galls on the marine red alga Prionitis lanceolata (Halymeniaceae): specific induction and subsequent development of an algal–bacterial symbiosis. . Am J Bot 85:, 1710–1721. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ashen J. B. , Goff L. J. . ( 2000; ). Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses. . Appl Environ Microbiol 66:, 3024–3030. [CrossRef] [PubMed]
    [Google Scholar]
  4. Behrens S. , Lösekann T. , Pett-Ridge J. , Weber P. K. , Ng W. O. , Stevenson B. S. , Hutcheon I. D. , Relman D. A. , Spormann A. M. . ( 2008; ). Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. . Appl Environ Microbiol 74:, 3143–3150. [CrossRef] [PubMed]
    [Google Scholar]
  5. Biebl H. , Allgaier M. , Tindall B. J. , Koblizek M. , Lünsdorf H. , Pukall R. , Wagner-Döbler I. . ( 2005; ). Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. . Int J Syst Evol Microbiol 55:, 1089–1096. [CrossRef] [PubMed]
    [Google Scholar]
  6. Biebl H. , Tindall B. J. , Pukall R. , Lünsdorf H. , Allgaier M. , Wagner-Döbler I. . ( 2006; ). Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a . . Int J Syst Evol Microbiol 56:, 821–826. [CrossRef] [PubMed]
    [Google Scholar]
  7. Caldwell D. E. , Caldwell S. J. . ( 1978a; ). A Zoogloea sp. in obligate association with blooms of Anabaena flos-aquae . . J Phycol 14:, 32.
    [Google Scholar]
  8. Caldwell D. E. , Caldwell S. J. . ( 1978b; ). A Zoogloea sp. associated with blooms of Anabaena flos-aquae . . Can J Microbiol 24:, 922–931. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y.-W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  10. DeSantis T. Z. Jr , Hugenholtz P. , Keller K. , Brodie E. L. , Larsen N. , Piceno Y. M. , Phan R. , Andersen G. L. . ( 2006a; ). nast: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. . Nucleic Acids Res 34:, W394–W399. [CrossRef] [PubMed]
    [Google Scholar]
  11. DeSantis T. Z. , Hugenholtz P. , Larsen N. , Rojas M. , Brodie E. L. , Keller K. , Huber T. , Dalevi D. , Hu P. , Andersen G. L. . ( 2006b; ). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb . . Appl Environ Microbiol 72:, 5069–5072. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ferrier M. , Martin J. L. , Rooney-Varga J. N. . ( 2002; ). Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy. . J Appl Microbiol 92:, 706–716. [CrossRef] [PubMed]
    [Google Scholar]
  13. Grossart H. P. , Czub G. , Simon M. . ( 2006; ). Algae-bacteria interactions and their effects on aggregation and organic matter flux in the sea. . Environ Microbiol 8:, 1074–1084. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jasti S. , Sieracki M. E. , Poulton N. J. , Giewat M. W. , Rooney-Varga J. N. . ( 2005; ). Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. . Appl Environ Microbiol 71:, 3483–3494. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jones A. K. , Cannon R. C. . ( 1986; ). The release of microalgal photosynthate and associated bacterial uptake and heterotrophic growth. . Br Phycol J 21:, 341–358. [CrossRef]
    [Google Scholar]
  16. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  17. Klassen J. L. . ( 2009; ). Pathway evolution by horizontal transfer and positive selection is accommodated by relaxed negative selection upon upstream pathway genes in purple bacterial carotenoid biosynthesis. . J Bacteriol 191:, 7500–7508. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. et al. & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lupton F. S. , Marshall K. C. . ( 1981; ). Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance. . Appl Environ Microbiol 42:, 1085–1092.[PubMed]
    [Google Scholar]
  20. Martínez-García M. , Diaz-Valdés M. , Ramos-Esplá A. , Salvador N. , Lopez P. , Larriba E. , Antón J. . ( 2007; ). Cytotoxicity of the ascidian Cystodytes dellechiajei against tumor cells and study of the involvement of associated microbiota in the production of cytotoxic compounds. . Mar Drugs 5:, 52–70. [CrossRef] [PubMed]
    [Google Scholar]
  21. Paerl H. W. . ( 1977; ). Specific associations of bluegreen algae Anabaena and Aphanizomenon with bacteria in freshwater blooms. . J Phycol 12:, 431–435.
    [Google Scholar]
  22. Paerl H. W. . ( 1978; ). Role of heterotrophic bacteria in promoting N2-fixation by Anabaena in aquatic habitats. . Microb Ecol 4:, 215–231. [CrossRef]
    [Google Scholar]
  23. Paerl H. W. . ( 1984; ). Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. . J Phycol 20:, 600–608. [CrossRef]
    [Google Scholar]
  24. Paerl H. W. , Gallucci K. K. . ( 1985; ). Role of chemotaxis in establishing a specific nitrogen-fixing cyanobacterial-bacterial association. . Science 227:, 647–649. [CrossRef] [PubMed]
    [Google Scholar]
  25. Paerl H. W. , Kellar P. E. . ( 1978; ). Significance of bacterial Anabaena (Cyanophyceae) associations with respect to N2 fixation in freshwater. . J Phycol 14:, 254–260. [CrossRef]
    [Google Scholar]
  26. Paerl H. W. , Pinckney J. L. . ( 1996; ). A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. . Microb Ecol 31:, 225–247. [CrossRef] [PubMed]
    [Google Scholar]
  27. Palacios L. , Arahal D. R. , Reguera B. , Marín I. . ( 2006; ). Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. . Int J Syst Evol Microbiol 56:, 1991–1995. [CrossRef] [PubMed]
    [Google Scholar]
  28. Peix A. , Rivas R. , Trujillo M. E. , Vancanneyt M. , Velázquez E. , Willems A. . ( 2005; ). Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov.. Int J Syst Evol Microbiol 55:, 1163–1166. [CrossRef] [PubMed]
    [Google Scholar]
  29. Rippka R. , Deruelles J. , Waterbury J. B. , Herdman M. , Stanier R. Y. . ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. . J Gen Microbiol 111:, 1–61.[CrossRef]
    [Google Scholar]
  30. Rüger H. J. , Höfle M. G. . ( 1992; ). Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev.. Int J Syst Bacteriol 42:, 133–143. [CrossRef] [PubMed]
    [Google Scholar]
  31. Schiefer G. E. , Caldwell D. E. . ( 1982; ). Synergistic interaction between Anabaena and Zoogloea spp. in carbon dioxide-limited continuous cultures. . Appl Environ Microbiol 44:, 84–87.[PubMed]
    [Google Scholar]
  32. Sekar R. , Kaczmarsky L. T. , Richardson L. L. . ( 2008; ). Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. . Mar Ecol Prog Ser 362:, 85–98. [CrossRef]
    [Google Scholar]
  33. Sipkema D. , Holmes B. , Nichols S. A. , Blanch H. W. . ( 2009; ). Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms. . Microb Ecol 58:, 903–920. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stevenson B. S. , Waterbury J. B. . ( 2006; ). Isolation and identification of an epibiotic bacterium associated with heterocystous Anabaena cells. . Biol Bull 210:, 73–77. [CrossRef] [PubMed]
    [Google Scholar]
  35. Swofford D. L. . ( 2003; ). paup*: phylogenetic analysis using parsimony (and other methods), version 4, Beta 10 edn. . Sunderland, MA:: Sinauer Associates;.
  36. Waterbury W. B. , Watson S. W. , Valois F. W. , Franks D. G. . ( 1986; ). Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus . . Can Bull Fish Aquat Sci 214:, 71–120.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025353-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025353-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2439 - 2444

Extracellular enzyme activity profiles (API ZYM) of strain WH2K and the type strains of species.

Polar lipid profiles of strain WH2K and type strains of species.

Polar lipids of strain WH2K and type strains of species of the genus , DSM 17068 , DSM 16655 and DSM 16791 .

Phylogenetic tree showing the relationship of sp. nov. WK2K to members of related genera, undescribed isolates and environmental clones in the α-2 subgroup of the , based on 16S rRNA gene sequences using maximum-likelihood.

[PDF file of Supplementary Tables and Figures](364 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error