1887

Abstract

A phylogenetically novel aerobic bacterium was isolated from an anaerobic–aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. The isolate, designated strain T-27, was a Gram-negative, rod-shaped aerobe. Cells often appeared to divide by budding replication. Strain T-27 grew at 25–35 °C with an optimum growth temperature of 30 °C, whilst no growth was observed below 20 °C or above 37 °C within 20 days incubation. The pH range for growth was 6·5–9·5, with an optimum at pH 7·0. Strain T-27 was able to utilize a limited range of substrates, such as yeast extract, polypepton, succinate, acetate, gelatin and benzoate. Neisser staining was positive and 4,6-diamidino-2-phenylindole-stained cells displayed a yellow fluorescence, indicative of polyphosphate inclusions. Menaquinone 9 was the major respiratory quinone. The cellular fatty acids of the strain were mainly composed of iso-C15 : 0, C16 : 1 and C14 : 0. The G+C content of the genomic DNA was 66 mol%. Comparative analyses of 16S rRNA gene sequences indicated that strain T-27 belongs to candidate division BD (also called KS-B), a phylum-level lineage in the bacterial domain, to date comprised exclusively of environmental 16S rDNA clone sequences. Here, a new genus and species are proposed, (type strain T-27=JCM 11422=DSM 14586) gen. nov., sp. nov., the first cultivated representative of the phyl. nov. Environmental sequence data indicate that this phylum is widespread in nature and has a phylogenetic breadth (19 % 16S rDNA sequence divergence) that is greater than well-known phyla such as the (18 % divergence).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02520-0
2003-07-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531155.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02520-0&mimeType=html&fmt=ahah

References

  1. Adachi, J. & Hasegawa, M. ( 1996; ). molphy Version 2.3 – Programs for Molecular Phylogenetics Based on Maximum Likelihood. Computer Science Monograph no. 28. Tokyo: Institute of Statistical Mathematics.
  2. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  3. Axelrood, P. E., Chow, M. L., Radomski, C. C., McDermott, J. M. & Davies, J. ( 2002; ). Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48, 655–674.[CrossRef]
    [Google Scholar]
  4. Bano, N. & Hollibaugh, J. T. ( 2002; ). Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68, 505–518.[CrossRef]
    [Google Scholar]
  5. Cifuentes, A., Antón, J., Benlloch, S., Donnelly, A., Herbert, R. A. & Rodríguez-Valera, F. ( 2000; ). Prokaryotic diversity in Zostera noltii-colonized marine sediments. Appl Environ Microbiol 66, 1715–1719.[CrossRef]
    [Google Scholar]
  6. Dojka, M. A., Harris, J. K. & Pace, N. R. ( 2000; ). Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66, 1617–1621.[CrossRef]
    [Google Scholar]
  7. Dunbar, J., Barns, S. M., Ticknor, L. O. & Kuske, C. R. ( 2002; ). Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68, 3035–3045.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Garrity, G. M. & Holt, J. G. ( 2001; ). Phylum BV. Chrysiogenetes phy. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria, pp. 421–425. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  10. Garrity, G. M., Winters, M. & Searles, D. B. ( 2001; ). Taxonomic outline of the prokaryotic genera. Bergey's Manual of Systematic Bacteriology, 2nd edn. Release 1.0. http://www.cme.msu.edu/bergeys/
  11. Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K. ( 2002a; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52, 187–193.
    [Google Scholar]
  12. Hanada, S., Liu, W.-T., Shintani, T., Kamagata, Y. & Nakamura, K. (2002b; ). Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 52, 883–887.[CrossRef]
    [Google Scholar]
  13. Hasegawa, M. & Kishino, H. ( 1994; ). Accuracies of the simple methods for estimating the bootstrap probability of a maximum likelihood tree. Mol Biol Evol 11, 142–145.
    [Google Scholar]
  14. Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J. & Moore, B. S. ( 2002; ). Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68, 4431–4440.[CrossRef]
    [Google Scholar]
  15. Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R. & Zehnder, A. J. B. ( 1999; ). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22, 454–465.[CrossRef]
    [Google Scholar]
  16. Hiraishi, A. ( 1992; ). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213.[CrossRef]
    [Google Scholar]
  17. Hiraishi, A., Shin, Y. K., Ueda, Y. & Sugiyama, J. ( 1994; ). Automated sequencing of PCR-amplified 16S rDNA on ‘Hydrolink’ gels. J Microbiol Methods 19, 145–154.[CrossRef]
    [Google Scholar]
  18. Holmes, A. J., Bowyer, J., Holley, M. P., O'Donoghue, M., Montgomery, M. & Gillings, M. R. ( 2000; ). Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33, 111–120.[CrossRef]
    [Google Scholar]
  19. Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P. & Gillings, M. R. ( 2001; ). Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3, 256–264.[CrossRef]
    [Google Scholar]
  20. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  21. Hugenholtz, P. ( 2002; ). Exploring prokaryotic diversity in the genomic era. Genome Biol 3, REVIEWS0003. http://genomebiology.com/2002/3/2/reviews/0003
    [Google Scholar]
  22. Hugenholtz, P. & Huber, T. ( 2003; ). Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53, 289–293.[CrossRef]
    [Google Scholar]
  23. Hugenholtz, P. & Pace, N. R. ( 1996; ). Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14, 190–197.[CrossRef]
    [Google Scholar]
  24. Hugenholtz, P., Goebel, B. M. & Pace, N. R. ( 1998; ). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180, 4765–4774.
    [Google Scholar]
  25. Hugenholtz, P., Tyson, G. W., Webb, R. I., Wagner, A. M. & Blackall, L. L. ( 2001; ). Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol 67, 411–419.[CrossRef]
    [Google Scholar]
  26. Jenkins, D., Richard, M. G. & Daigger, G. L. ( 1993; ). Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd edn. Boca Raton, FL: Lewis.
  27. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  28. Kempsell, K. E., Cox, C. J., Hurle, M., Wong, A., Wilkie, S., Zanders, E. D., Gaston, J. S. & Crowe, J. S. ( 2000; ). Reverse transcriptase-PCR analysis of bacterial rRNA for detection and characterization of bacterial species in arthritis synovial tissue. Infect Immun 68, 6012–6026.[CrossRef]
    [Google Scholar]
  29. Kim, H., Honda, D., Hanada, S., Kanamori, N., Shibata, S., Miyaki, T., Nakamura, K. & Oyaizu, H. ( 2000; ). A deeply branched novel phylotype found in Japanese paddy soils. Microbiology 146, 2309–2315.
    [Google Scholar]
  30. Kishino, H., Miyata, T. & Hasegawa, M. ( 1990; ). Maximum likelihood inference of protein phylogeny, and the origin of chloroplast. J Mol Evol 31, 151–160.[CrossRef]
    [Google Scholar]
  31. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  32. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  33. Kushida, H. ( 1980; ). An improved embedding method using ERL 4206 and Quetol 653. J Electron Microsc 29, 193–194.
    [Google Scholar]
  34. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  35. Lanoil, B. D., Sassen, R., La Duc, M. T., Sweet, S. T. & Nealson, K. H. ( 2001; ). Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates. Appl Environ Microbiol 67, 5143–5153.[CrossRef]
    [Google Scholar]
  36. Li, L., Kato, C. & Horikoshi, K. ( 1999; ). Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8, 659–677.[CrossRef]
    [Google Scholar]
  37. Liu, W.-T., Nakamura, K., Matsuo, T. & Mino, T. ( 1997; ). Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactor-effect of the P/C feeding ratio. Water Res 31, 1430–1438.[CrossRef]
    [Google Scholar]
  38. Liu, W.-T., Nielsen, A. T., Wu, J.-H., Tsai, C.-S., Matsuo, Y. & Molin, S. ( 2001; ). In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3, 110–122.[CrossRef]
    [Google Scholar]
  39. Madrid, V. M., Aller, J. Y., Aller, R. C. & Chistoserdov, A. Y. ( 2001; ). High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisions. FEMS Microbiol Ecol 37, 197–209.[CrossRef]
    [Google Scholar]
  40. Magee, C. M., Rodeheaver, G., Edgerton, R. F. & Edlich, R. F. ( 1975; ). A more reliable Gram staining technique for diagnosis of surgical infections. Am J Surg 130, 341–346.[CrossRef]
    [Google Scholar]
  41. Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Schumann, P., Burghardt, J., Tokiwa, Y. & Stratton, H. M. ( 2000; ). Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50, 593–603.[CrossRef]
    [Google Scholar]
  42. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K. & Kamagata, Y. ( 1995; ). Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45, 17–22.[CrossRef]
    [Google Scholar]
  43. Pace, N. R., Stahl, D. A., Lane, D. J. & Olsen, G. J. ( 1986; ). The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9, 1–55.
    [Google Scholar]
  44. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef]
    [Google Scholar]
  45. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  46. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 2000; ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef]
    [Google Scholar]
  47. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–651. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  48. Swofford, D. L. ( 2002; ). paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4. Sunderland, MA: Sinauer Associates,.
  49. Tamaoka, J., Katayama-Fujimura, Y. & Kuraishi, H. ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54, 31–36.[CrossRef]
    [Google Scholar]
  50. Valinsky, L., Della Vedova, G., Scupham, A. J. & 8 other authors ( 2002; ). Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl Environ Microbiol 68, 3243–3250.[CrossRef]
    [Google Scholar]
  51. Webster, N. S., Wilson, K. J., Blackall, L. L. & Hill, R. T. ( 2001; ). Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67, 434–444.[CrossRef]
    [Google Scholar]
  52. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  53. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02520-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02520-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error