1887

Abstract

Several species of the genus were isolated during a survey of the mycobiota of leaf litter and soil in Colombian Amazon forest. Five species, sp. nov. (type strain CBS 113178 = IBT 23262), sp. nov. (type strain CBS 118171 = IBT 23253), sp. nov. (type strain CBS 113149 = IBT 23247), sp. nov. (type strain CBS 118135 = IBT 23229) and sp. nov. (type strain CBS 126216 = IBT 23203) are described here as novel species. Their taxonomic novelty was determined using a polyphasic approach, combining phenotypic, molecular (ITS and partial βtubulin sequences) and extrolite data. Phylogenetic analyses showed that each novel species formed a unique clade for both loci analysed and that they were most closely related to ,, and . An overview of the phylogeny of this taxonomically difficult group is presented, and 33 species are accepted. Each of the five novel species had a unique extrolite profile of known and uncharacterized metabolites and various compounds, such as penicillic acid, andrastin A, pulvilloric acid, paxillin, paspaline and janthitrem, were commonly produced by these phylogenetically related species. The novel species had a high growth rate on agar media, but could be distinguished from each other by several macro- and microscopical characteristics.

Funding
This study was supported by the:
  • NWO-WOTRO (Award WB 84-525 and 895.100.014)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025098-0
2011-06-01
2021-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1462.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025098-0&mimeType=html&fmt=ahah

References

  1. Aerts R. 1997; Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449 [View Article]
    [Google Scholar]
  2. Burgstaller W., Strasser H., Wöbking H., Schinner F. 1992; Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: bioreactor leaching and stoichiometry. Environ Sci Technol 26:340–346 [View Article]
    [Google Scholar]
  3. Christensen M., Frisvad J. C., Tuthill D. E. 2000; Penicillium species diversity in soil and some taxonomic and ecological notes. In Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification pp. 309–320 Edited by Samson R. A., Pitt J. I. London, UK: Harwood Academic Publishers;
    [Google Scholar]
  4. Duivenvoorden J. F., Lips J. M. 1998; Mesoscale patterns of tree species diversity in Colombian Amazonia. In Forest biodiversity in North, Central and South America and the Caribbean pp. 535–549 Edited by Dallmeier F., Comiskey J. A. Carnforth, UK: Arthenon;
    [Google Scholar]
  5. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Frisvad J. C., Filtenborg O. 1990; Revision of Penicillium subgenus Furcatum based on secondary metabolites and conventional characters. In Modern Concepts in Penicillium and Aspergillus Classification, NATO ASI Series A185 pp. 159–172 Edited by Samson R. A., Pitt J. I. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  8. Frisvad J. C., Thrane U. 1987; Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection). J Chromatogr A 404:195–214 [View Article]
    [Google Scholar]
  9. Gams W., Domsch K. H. 1967; Contributions to the soil washing technique for the isolation of soil fungi. Arch Mikrobiol 58:134–144 [View Article]
    [Google Scholar]
  10. Gentry A. U. 1996 A field guide to the families and genera of woody plants of Northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa, 2nd edn. Chicago: The University of Chicago Press;
    [Google Scholar]
  11. Gerrits van den Ende A. H. G., de Hoog G. S. 1999; Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana . Stud Mycol 43:151–162
    [Google Scholar]
  12. Glass N. L., Donaldson G. C. 1995; Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330[PubMed]
    [Google Scholar]
  13. González-Pérez E., Yáñez-Morales M. J., Ortega-Escobar H. M., Velázquez-Mendoza J. 2009; Comparative analysis among pathogenic fungal species that cause gladiolus (Gladiolus grandiflorus Hort.) corm rot in Mexico. Rev Mex Fitopatol 27:45–52
    [Google Scholar]
  14. Han Y., Liang Z., Chu H., Kang J. 2005; Paecilomyces parvosporus, a new species with its relatives from Yunnan Province, China. Mycotaxon 94:357–363
    [Google Scholar]
  15. Kauff F., Lutzoni F. 2002; Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156 [View Article][PubMed]
    [Google Scholar]
  16. Killham K. 1994 Soil Ecology New York: Cambridge University Press;
    [Google Scholar]
  17. Krogh K. B. R., Mørkeberg A., Jørgensen H., Frisvad J. C., Olsson L. 2004; Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 114:389–402 [View Article][PubMed]
    [Google Scholar]
  18. Li X. M., Liao D. X., Xu X. Q., Yang Q., Zeng G. M., Zheng W., Guo L. 2008; Kinetic studies for the biosorption of lead and copper ions by Penicillium simplicissimum immobilized within loofa sponge. J Hazard Mater 159:610–615 [View Article][PubMed]
    [Google Scholar]
  19. Lund F. 1995; Differentiating Penicillium species by detection of indole metabolites using a filter paper method. Lett Appl Microbiol 20:228–231 [View Article]
    [Google Scholar]
  20. Maggs J. 1985; Litter fall and retranslocation of nutrients in a refertilized and prescribed burned Pinus elliottii plantation. For Ecol Manage 12:253–268 [View Article]
    [Google Scholar]
  21. Moreno-Velazquez M., Yanez-Morales M. J., Rojas-Martinez R. I., Zavaleta-Mejia E., Trinidad-Santos A., Arellano-Vazquez J. L. 2005; Fungal diversity in amaranthus (Amaranthus hypochondriacus L.) seed and their molecular characterization. Rev Mex Fitopatol 23:111–118
    [Google Scholar]
  22. Nei M., Kumar S. 2000 Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  23. Osono T., Takeda H. 2002; Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427 [View Article][PubMed]
    [Google Scholar]
  24. Peterson S. W. 2000; Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification pp. 163–178 Edited by Samson R. A., Pitt J. I. New York: Plenum Press;
    [Google Scholar]
  25. Pitt J. I. 1979 The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces London: Academic Press;
    [Google Scholar]
  26. Raper K. B., Thom C. 1949 Manual of the Penicillia Baltimore: Williams and Wilkins;
    [Google Scholar]
  27. Reynolds D. R., Taylor J. W. 1991; Nucleic acids and nomenclature: name stability under Article 59. In Improving the Stability of Names: Needs and Options. Regnum Veg. 123 pp. 171–177 Edited by Hawksworth D. L. Köningstein, Germany: Koelte Scientific Books;
    [Google Scholar]
  28. Richards B. N. 1987 The Microbiology of Terrestrial Ecosystems England: Longman Scientific and Technical;
    [Google Scholar]
  29. Sáenz M. S. 1997; Catálogo preliminar comentado de la flora del Medio Caquetá.. Tropenbos Colombia (XII)
  30. Smedsgaard J. 1997; Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270 [View Article][PubMed]
    [Google Scholar]
  31. Song F., Tian X., Fan X., He X. 2010; Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia 102:20–26 [View Article][PubMed]
    [Google Scholar]
  32. Sonjak S., Uršič V., Frisvad J. C., Gunde-Cimerman N. 2007; Penicillium svalbardense, a new species from Arctic glacial ice. Antonie van Leeuwenhoek 92:43–51 [View Article][PubMed]
    [Google Scholar]
  33. Stamatakis A., Ludwig T., Meier H. 2005; RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463 [View Article][PubMed]
    [Google Scholar]
  34. Stolk A. C., Samson R. A. 1983; The ascomycete genus Eupenicillium and related Penicillium anamorphs. Stud Mycol 23:144–146
    [Google Scholar]
  35. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  37. Thygesen A., Thomsen A. B., Schmidt A. S., Jørgensen H., Ahring B. K., Olsson L. 2003; Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme Microb Technol 32:606–615 [View Article]
    [Google Scholar]
  38. Tuthill D. E., Frisvad J. C., Christensen M. 2001; Systematics of Penicillium simplicissimum based on rDNA sequences, morphology and secondary metabolites. Mycologia 93:298–308 [View Article]
    [Google Scholar]
  39. Valix M., Tang J. Y., Malik R. 2001; Heavy metal tolerance of fungi. Miner Eng 14:499–505 [View Article]
    [Google Scholar]
  40. van Wyk J. P. H. 1999; Saccharification of paper products by cellulase from Penicillium funiculosum and Trichoderma reesei . Biomass Bioenergy 16:239–242 [View Article]
    [Google Scholar]
  41. Vester H., Cleef A. 1998; Tree architecture and secondary tropical rain forest development. A case study in Araracuara, Colombian Amazonia. Flora 193:75–97
    [Google Scholar]
  42. Wardle D. A., Bardgett R. D., Klironomos J. N., Setälä H., van der Putten W. H., Wall D. H. 2004; Ecological linkages between aboveground and belowground biota. Science 304:1629–1633 [View Article][PubMed]
    [Google Scholar]
  43. Weinberg E. D. 1957; The mutual effects of antimicrobial compounds and metallic cations. Bacteriol Rev 21:46–68[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025098-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025098-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error