1887

Abstract

A novel thermophilic, hydrogen-oxidizing bacterium, designated 29W, was isolated from a deep-sea hydrothermal vent chimney sample collected from the Suiyo Seamount in the Izu-Bonin Arc, Japan, at a depth of 1385 m. The cells were cocci (0·9–1·0 μm in diameter) and straight rods (2·3–2·7 μm long) under static and agitated culture conditions, respectively. The new isolate was an obligate chemolithoautotroph growing by respiratory nitrate reduction with H, forming N as a final product. A very low concentration of O (optimum 0·6–0·8 %, v/v) was also used as an alternative electron acceptor while reduced sulfur compounds did not serve as electron donors. Anoxic hydrogen-oxidizing growth with nitrate was observed between 50 and 72·5 °C (optimum 70 °C; 40 min doubling time), pH 5·5 and 7·6 (optimum pH 7·2), and in the presence of 1·5 and 5·0 % NaCl (optimum 2·5 %). The G+C content of the genomic DNA was 37·3 mol%. Phylogenetic analysis based on 16S rDNA sequences indicated that the isolate was a member of the recently described genus in a potential new family within the order . On the basis of the physiological and molecular properties of the new isolate, the name sp. nov. is proposed. The type strain is strain 29W (=JCM 11663=DSM 15103).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02505-0
2003-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530863.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02505-0&mimeType=html&fmt=ahah

References

  1. Allen, S. E., Grimshaw, H. M., Parkinson, J. A. & Quarmby, C. ( 1974; ). Inorganic constituents: nitrogen. In Chemical Analysis of Ecological Materials, pp. 184–206. Edited by S. E. Allen. London: Blackwell Scientific.
  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  3. Blöchl, E., Keller, M., Wächtershäuser, G. & Stetter, K. O. ( 1992; ). Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci U S A 89, 8117–8120.[CrossRef]
    [Google Scholar]
  4. Burggraf, S., Olsen, G. J., Stetter, K. O. & Woese, C. R. ( 1992; ). A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15, 353–356.
    [Google Scholar]
  5. Deckert, G., Warren, P. V., Gaasterland, T. & 13 other authors ( 1998; ). The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353–358.[CrossRef]
    [Google Scholar]
  6. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  7. Eder, W. & Huber, R. ( 2002; ). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6, 309–318.[CrossRef]
    [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  9. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. T. & Reysenbach, A.-L. ( 2002; ). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef]
    [Google Scholar]
  10. Harmsen, H. J. M., Prieur, D. & Jeanthon, C. ( 1997; ). Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl Environ Microbiol 63, 4061–4068.
    [Google Scholar]
  11. Huber, R., Wilharm, T., Huber, D. & 7 other authors ( 1992; ). Aquifex pyrophilus gen. nov., sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15, 340–351.[CrossRef]
    [Google Scholar]
  12. Huber, R., Eder, W., Heldwien, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K. O. ( 1998; ). Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64, 3576–3583.
    [Google Scholar]
  13. Huber, H., Diller, S., Horn, C. & Rachel, R. ( 2002; ). Thermovibrio ruber gen. nov., sp. nov., a novel extremely thermophilic, chemolithoautotrophic deeply branching bacterial nitrate-reducer. Int J Syst Evol Microbiol 52, 1859–1865.[CrossRef]
    [Google Scholar]
  14. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. ( 1998; ). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376.
    [Google Scholar]
  15. Kawasumi, T., Igarashi, Y., Kodama, T. & Minoda, Y. ( 1984; ). Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34, 5–10.[CrossRef]
    [Google Scholar]
  16. Kristjansson, J. K., Ingason, A. & Alfredsson, G. A. ( 1985; ). Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from Icelandic hot springs. Arch Microbiol 140, 321–325.[CrossRef]
    [Google Scholar]
  17. Kryukov, V. R., Savel'eva, N. D. & Pusheva, M. A. ( 1984; ). Calderobacterium hydrogenophilum gen. nov., sp. nov., an extremely thermophilic hydrogen bacterium and its hydrogenase activity. Mikrobiologiya 52, 781–788.
    [Google Scholar]
  18. Lauerer, G., Kristjansson, J. K., Langworthy, T. A., König, H. & Stetter, K. O. ( 1986; ). Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8, 100–105.[CrossRef]
    [Google Scholar]
  19. L'Haridon, S., Cilia, V., Messner, P., Raguénès, G., Gambacorta, A., Sleytr, U. B., Prieur, D. & Jeanthon, C. ( 1998; ). Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48, 701–711.[CrossRef]
    [Google Scholar]
  20. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  21. Marteinsson, V. T., Hauksdottir, S., Hobel, C. F. V., Kristmannsdottir, H., Hreggvidsson, G. O. & Kristjansson, J. K. ( 2001; ). Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67, 4242–4248.[CrossRef]
    [Google Scholar]
  22. Matsunaga, K. & Nishimura, M. ( 1969; ). Determination of nitrate in sea water. Anal Chim Acta 43, 350–353.
    [Google Scholar]
  23. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  24. Repaske, R., Ambrose, A., Repaske, A. C. & DeLacy, M. L. ( 1971; ). Bicarbonate requirement for elimination of the lag period of Hydrogenomonas eutropha. J Bacteriol 107, 712–717.
    [Google Scholar]
  25. Reysenbach, A.-L., Ehringer, M. & Hershberger, K. ( 2000a; ). Microbial diversity at 83 °C in calcite springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4, 61–67.
    [Google Scholar]
  26. Reysenbach, A.-L., Longnecker, K. & Kirshtein, J. ( 2000b; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  27. Reysenbach, A.-L., Banta, A. B., Boone, D. R., Cary, S. C. & Luther, G. W. ( 2000c; ). Microbial essentials at hydrothermal vents. Nature 404, 835–836.[CrossRef]
    [Google Scholar]
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Sako, Y., Takai, K., Ishida, Y., Uchida, A. & Katayama, Y. ( 1996; ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46, 1099–1104.[CrossRef]
    [Google Scholar]
  30. Sako, Y., Nakagawa, S., Takai, K. & Horikoshi, K. ( 2003; ). Marinithermus hydrothermalis gen. nov., sp. nov., an extremely thermophilic, heterotrophic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 59–65.[CrossRef]
    [Google Scholar]
  31. Shima, S. & Suzuki, K. ( 1993; ). Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth. Int J Syst Bacteriol 43, 703–708.[CrossRef]
    [Google Scholar]
  32. Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K. ( 2000; ). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef]
    [Google Scholar]
  33. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  34. Stöhr, R., Waberski, A., Völker, H., Tindall, B. J. & Thomm, M. ( 2001; ). Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51, 1853–1862.[CrossRef]
    [Google Scholar]
  35. Takacs, C. D., Ehringer, M., Favre, R., Cermola, M., Eggertsson, G., Palsdottir, A. & Reysenbach, A.-L. ( 2001; ). Phylogenetic characterization of the blue filamentous bacterial community from an Icelandic geothermal spring. FEMS Microbiol Ecol 35, 123–128.[CrossRef]
    [Google Scholar]
  36. Takai, K. & Horikoshi, K. ( 1999; ). Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152, 1285–1297.
    [Google Scholar]
  37. Takai, K. & Sako, Y. ( 1999; ). A molecular view of archaeal diveristy in marine and terrestrial hot water environments. FEMS Microbiol Ecol 28, 177–188.[CrossRef]
    [Google Scholar]
  38. Takai, K., Komatsu, T. & Horikoshi, K. ( 2001; ). Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51, 1425–1435.
    [Google Scholar]
  39. Takai, K., Hirayama, H., Sakihama, Y., Inagaki, F., Yamato, Y. & Horikoshi, K. ( 2002; ). Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68, 3046–3054.[CrossRef]
    [Google Scholar]
  40. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53, 839–846.[CrossRef]
    [Google Scholar]
  41. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  42. Thompson, T. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  43. Van Dover, C. L., Humphris, S. E., Fornari, D. & 24 other authors ( 2001; ). Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818–823.[CrossRef]
    [Google Scholar]
  44. Völkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A. & Stetter, K. O. ( 1993; ). Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59, 2918–2926.
    [Google Scholar]
  45. Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H. X., Maki, Y. & Shimizu, A. ( 1998; ). Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64, 1680–1687.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02505-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02505-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 863 - 869

Supplementary figures showing the effect of temperature, pH and NaCl concentration on growth of (Fig. 1), the effect of O concentration in the headspace on growth (Fig. 2), and growth and production of N from nitrate (Fig. 3).



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error