1887

Abstract

Two halophilic archaea, strains EN-2 and SH-4, were isolated from the saline lakes Erliannor and Shangmatala, respectively, in Inner Mongolia, China. Cells were strictly aerobic, motile rods. Colonies were red. Strains EN-2 and SH-4 were able to grow at 25–50 °C (optimum 35–40 °C), with 2.5–5.0 M NaCl (optimum 3.4 M NaCl) and at pH 6.0–9.0 (optimum pH 7.5). MgCl was not required for growth. Cells lysed in distilled water and the lowest NaCl concentration that prevented cell lysis was 12 % (w/v). On the basis of 16S rRNA gene sequence analysis, strains EN-2 and SH-4 were closely related to B31 (97.9 and 98.0 % similarity, respectively), 8W8 (97.3 and 97.7 %), DZ-1 (96.8 and 97.1 %), CGSA15 (96.8 and 97.0 %) and 9-3 (96.8 and 97.0 %). DNA–DNA hybridization showed that strains EN-2 and SH-4 did not belong to the same species as any of these strains (≤45 % DNA–DNA relatedness) but that they are members of the same species (>70 % DNA–DNA relatedness). Polar lipid analysis revealed that strains EN-2 and SH-4 contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diethers and several unidentified glycolipids. The DNA G+C content of both isolates was 62.1 mol%. It was concluded that strains EN-2 and SH-4 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EN-2 ( = CECT 7174  = CGMCC 1.6377  = JCM 14031).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025015-0
2011-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1144.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025015-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R. , Dewhirst F. E. , Paster B. J. , Volcani B. E. , Ventosa A. . ( 1996; ). Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. . Appl Environ Microbiol 62:, 3779–3786.[PubMed]
    [Google Scholar]
  2. Castillo A. M. , Gutiérrez M. C. , Kamekura M. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. , Grant W. D. , Ventosa A. . ( 2006; ). Halorubrum orientale sp. nov., a halophilic archaeon isolated from Lake Ejinor, Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 2559–2563. [CrossRef] [PubMed]
    [Google Scholar]
  3. Castillo A. M. , Gutiérrez M. C. , Kamekura M. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. , Grant W. D. , Ventosa A. . ( 2007; ). Halorubrum ejinorense sp. nov., isolated from Lake Ejinor, Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 2538–2542. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y.-W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cui H.-L. , Tohty D. , Zhou P.-J. , Liu S.-J. . ( 2006; ). Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. . Int J Syst Evol Microbiol 56:, 1631–1634. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cui H.-L. , Lin Z.-Y. , Dong Y. , Zhou P.-J. , Liu S.-J. . ( 2007; ). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57:, 2204–2206. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fan H. , Xue Y. , Ma Y. , Ventosa A. , Grant W. D. . ( 2004; ). Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. . Int J Syst Evol Microbiol 54:, 1213–1216. [CrossRef] [PubMed]
    [Google Scholar]
  8. Feng J. , Zhou P.-J. , Liu S.-J. . ( 2004; ). Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. . Int J Syst Evol Microbiol 54:, 1789–1791. [CrossRef] [PubMed]
    [Google Scholar]
  9. Feng J. , Zhou P. , Zhou Y.-G. , Liu S.-J. , Warren-Rhodes K. . ( 2005; ). Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. . Int J Syst Evol Microbiol 55:, 149–152. [CrossRef] [PubMed]
    [Google Scholar]
  10. Franzmann P. D. , Stackebrandt E. , Sanderson K. , Volkman J. K. , Cameron D. E. , Stevenson P. L. , McMeekin T. A. , Burton H. R. . ( 1988; ). Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. . Syst Appl Microbiol 11:, 20–27.[CrossRef]
    [Google Scholar]
  11. Grant W. D. , Kamekura M. , McGenity T. J. , Ventosa A. . ( 2001; ). Order I. Halobacteriales Grant & Larsen 1989b, 495VP (Effective publication: Grant & Larsen 1989a, 2216). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 294–334. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  12. Gutiérrez M. C. , Kamekura M. , Holmes M. L. , Dyall-Smith M. L. , Ventosa A. . ( 2002; ). Taxonomic characterization of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov.. Extremophiles 6:, 479–483. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gutiérrez M. C. , Castillo A. M. , Pagaling E. , Heaphy S. , Kamekura M. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. et al. ( 2008; ). Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. . Int J Syst Evol Microbiol 58:, 2031–2035. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hu L. , Pan H. , Xue Y. , Ventosa A. , Cowan D. A. , Jones B. E. , Grant W. D. , Ma Y. . ( 2008; ). Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. . Int J Syst Evol Microbiol 58:, 1705–1708. [CrossRef] [PubMed]
    [Google Scholar]
  15. Johnson J. L. . ( 1994; ). Similarity analysis of DNAs. . In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Kamekura M. . ( 1993; ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H. , Hochstein L. I. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  17. Kamekura M. , Dyall-Smith M. L. . ( 1995; ). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba . . J Gen Appl Microbiol 41:, 333–350. [CrossRef]
    [Google Scholar]
  18. Kamekura M. , Dyall-Smith M. L. , Upasani V. , Ventosa A. , Kates M. . ( 1997; ). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. . Int J Syst Bacteriol 47:, 853–857.[CrossRef]
    [Google Scholar]
  19. Kharroub K. , Quesada T. , Ferrer R. , Fuentes S. , Aguilera M. , Boulahrouf A. , Ramos-Cormenzana A. , Monteoliva-Sánchez M. . ( 2006; ). Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria. . Int J Syst Evol Microbiol 56:, 1583–1588. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lizama C. , Monteoliva-Sánchez M. , Suárez-García A. , Roselló-Mora R. , Aguilera M. , Campos V. , Ramos-Cormenzana A. . ( 2002; ). Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. . Int J Syst Evol Microbiol 52:, 149–155.[PubMed]
    [Google Scholar]
  21. López-García P. , Moreira D. , López-López A. , Rodríguez-Valera F. . ( 2001; ). A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. . Environ Microbiol 3:, 72–78. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ludwig W. , Strunk O. , Klugbauer S. , Klugbauer N. , Weizenegger M. , Neumaier J. , Bachleitner M. , Schleifer K.-H. . ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19:, 554–568. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. et al. ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  24. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  25. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  26. McGenity T. J. , Grant W. D. . ( 1995; ). Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov.. Syst Appl Microbiol 18:, 237–243.[CrossRef]
    [Google Scholar]
  27. McGenity T. J. , Grant W. D. . ( 2001; ). Genus VII. Halorubrum . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 320–324. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  28. Oren A. . ( 1983; ). Halorubrum sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. . Int J Syst Bacteriol 33:, 381–386. [CrossRef]
    [Google Scholar]
  29. Oren A. . ( 1994; ). The ecology of the extremely halophilic archaea. . FEMS Microbiol Rev 13:, 415–439. [CrossRef]
    [Google Scholar]
  30. Oren A. , Ventosa A. . ( 1996; ). A proposal for the transfer of Halorubrobacterium distributum and Halorubrobacterium coriense to the genus Halorubrum as Halorubrum distributum comb. nov. and Halorubrum coriense comb. nov., respectively. . Int J Syst Bacteriol 46:, 1180. [CrossRef]
    [Google Scholar]
  31. Oren A. , Ventosa A. , Grant W. D. . ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales . . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  32. Oren A. , Arahal D. R. , Ventosa A. . ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae . . Int J Syst Evol Microbiol 59:, 637–642. [CrossRef] [PubMed]
    [Google Scholar]
  33. Owen R. J. , Hill L. R. . ( 1979; ). The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, , 2nd edn., pp. 217–296. Edited by Skinner F. A. , Lovelock D. W. . . London:: Academic Press;.
    [Google Scholar]
  34. Pesenti P. T. , Sikaroodi M. , Gillevet P. M. , Sánchez-Porro C. , Ventosa A. , Litchfield C. D. . ( 2008; ). Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. . Int J Syst Evol Microbiol 58:, 2710–2715. [CrossRef] [PubMed]
    [Google Scholar]
  35. Petter H. F. M. . ( 1931; ). On bacteria of salted fish. . Proc K Ned Akad Wet Amsterdam 34:, 1417–1423.
    [Google Scholar]
  36. Roh S. W. , Bae J.-W. . ( 2009; ). Halorubrum cibi sp. nov., an extremely halophilic archaeon from salt-fermented seafood. . J Microbiol 47:, 162–166. [CrossRef] [PubMed]
    [Google Scholar]
  37. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  38. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  39. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. et al. ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tomlinson G. A. , Hochstein L. I. . ( 1976; ). Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 22:, 587–591. [CrossRef] [PubMed]
    [Google Scholar]
  41. Ventosa A. , Gutiérrez M. C. , Kamekura M. , Zvyagintseva I. S. , Oren A. . ( 2004; ). Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov.. Int J Syst Evol Microbiol 54:, 389–392. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Commitee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  43. Xu X.-W. , Wu Y.-H. , Zhang H. B. , Wu M. . ( 2007; ). Halorubrum arcis sp. nov., an extremely halophilic archaeon isolated from a saline lake on the Qinghai-Tibet Plateau, China. . Int J Syst Evol Microbiol 57:, 1069–1072. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025015-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025015-0
Loading

Data & Media loading...

Supplements

Phase-contrast micrograph of cells of sp. nov. EN-2 grown in liquid medium under optimal conditions. Bar, 10 µm.

IMAGE

TLC of polar lipids extracted from sp. nov. strains and some other haloarchaea. Lanes: 1, JCM 11081 ; 2, EJ-46 ; 3, XH-70 ; 4, sp. nov. EN-2 ; 5, sp. nov. SH-4; 6, a strain. DGA-2, Diglycosylarchaeol; PG, phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester; S-TeGA, sulfated tetraglycosylarchaeol; S-TGA-1, sulfated triglycosylarchaeol; TGA-2, triglycosylarchaeol. Circled spots are glycolipids.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error