1887

Abstract

Seven strains associated with various legume species grown in different geographical regions of China were defined into four genomic groups related to , based upon ribosomal intergenic spacer RFLP, phylogenies of 16S rRNA and housekeeping (, and ) genes, and DNA relatedness. Three strains in group I were classified as , as they showed high gene sequence similarities (>97 %) and DNA relatedness (64.3–67.5 %) to . H152. Groups II, III and IV differed from all defined species based upon the consensus of all analyses. As group II contained two strains that originated from two distinct populations, we propose this group as a novel species, sp. nov., with strain CCBAU 83011 ( = LMG 25718 = HAMBI 3117) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024943-0
2011-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1912.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024943-0&mimeType=html&fmt=ahah

References

  1. Amarger N. , Macheret V. , Laguerre G. . ( 1997; ). Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. . Int J Syst Bacteriol 47:, 996–1006. [CrossRef].[PubMed].
    [Google Scholar]
  2. Benata H. , Mohammed O. , Noureddine B. , Abdelbasset B. , Abdelmoumen H. , Muresu R. , Squartini A. , El Idrissi M. M. . ( 2008; ). Diversity of bacteria that nodulate Prosopis juliflora in the eastern area of Morocco. . Syst Appl Microbiol 31:, 378–386. [CrossRef].[PubMed].
    [Google Scholar]
  3. Beyhaut E. , Tlusty B. , van Berkum P. , Graham P. H. . ( 2006; ). Rhizobium giardinii is the microsymbiont of Illinois bundleflower (Desmanthus illinoensis (Michx.) Macmillan) in midwestern prairies. . Can J Microbiol 52:, 903–907. [CrossRef].[PubMed].
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef].[PubMed].
    [Google Scholar]
  5. Farrand S. K. , Van Berkum P. B. , Oger P. . ( 2003; ). Agrobacterium is a definable genus of the family Rhizobiaceae . . Int J Syst Evol Microbiol 53:, 1681–1687. [CrossRef].[PubMed].
    [Google Scholar]
  6. Frank B. . ( 1889; ). Über die Pilzsymbiose der Leguminosen. . Ber Deut Bot Ges 7:, 332–346. (in German).
    [Google Scholar]
  7. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Gao J. , Sun J. , Li Y. , Wang E. , Chen W. . ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province, China. . Int J Syst Bacteriol 44:, 151–158. [CrossRef]
    [Google Scholar]
  9. García-Fraile P. , Rivas R. , Willems A. , Peix A. , Martens M. , Martínez-Molina E. , Mateos P. F. , Velázquez E. . ( 2007; ). Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba . . Int J Syst Evol Microbiol 57:, 844–848. [CrossRef].[PubMed].
    [Google Scholar]
  10. Gaunt M. W. , Turner S. L. , Rigottier-Gois L. , Lloyd-Macgilp S. A. , Young J. P. . ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. . Int J Syst Evol Microbiol 51:, 2037–2048. [CrossRef].[PubMed].
    [Google Scholar]
  11. Graham P. , Sadowsky M. , Keyser H. et al. ( 1991; ). Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. . Int J Syst Evol Microbiol 41:, 582–587.
    [Google Scholar]
  12. Herrera-Cervera J. A. , Caballero-Mellado J. , Laguerre G. , Tichy H.-V. , Requena N. , Amarger N. Ã. , Martínez-Romero E. , Olivares J. Ã. , Sanjuan J. . ( 1999; ). At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. . FEMS Microbiol Ecol 30:, 87–97. [CrossRef]
    [Google Scholar]
  13. Hou B. C. , Wang E. T. , Li Y. , Jia R. Z. , Chen W. F. , Man C. X. , Sui X. H. , Chen W. X. . ( 2009; ). Rhizobial resource associated with epidemic legumes in Tibet. . Microb Ecol 57:, 69–81. [CrossRef].[PubMed].
    [Google Scholar]
  14. Hunter W. J. , Kuykendall L. D. , Manter D. K. . ( 2007; ). Rhizobium selenireducens sp. nov.: a selenite-reducing α-Proteobacteria isolated from a bioreactor. . Curr Microbiol 55:, 455–460. [CrossRef].[PubMed].
    [Google Scholar]
  15. Hurek T. , Wagner B. , Reinhold-Hurek B. . ( 1997; ). Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. . Appl Environ Microbiol 63:, 4331–4339.[PubMed].
    [Google Scholar]
  16. Iglesias O. , Rivas R. , García-Fraile P. , Abril A. , Mateos P. F. , Martinez-Molina E. , Velázquez E. . ( 2007; ). Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain. . FEMS Microbiol Lett 277:, 210–216. [CrossRef].[PubMed].
    [Google Scholar]
  17. Jordan D. C. . ( 1984; ). Family III. Rhizobiaceae Conn (1938). 321AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 234–254. Edited by Krieg N. R. , Holt I. G. . . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  18. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  19. Kersters K. , De Ley J. . ( 1984; ). Genus III. Agrobacterium Conn 1942, 359AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 244–254. Edited by Krieg N. R. , Holt I. G. . . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  20. Kwon S. W. , Park J. Y. , Kim J. S. , Kang J. W. , Cho Y. H. , Lim C. K. , Parker M. A. , Lee G. B. . ( 2005; ). Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. . Int J Syst Evol Microbiol 55:, 263–270. [CrossRef].[PubMed].
    [Google Scholar]
  21. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001; ). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed].
    [Google Scholar]
  22. Lin D. X. , Man C. X. , Wang E. T. , Chen W. X. . ( 2007; ). Diverse rhizobia that nodulate two species of Kummerowia in China. . Arch Microbiol 188:, 495–507. [CrossRef].[PubMed].
    [Google Scholar]
  23. Lindström K. . ( 1989; ). Rhizobium galegae, a new species of legume root nodule bacteria. . Int J Syst Bacteriol 39:, 365–367. [CrossRef]
    [Google Scholar]
  24. Lu Y. L. , Chen W. F. , Li Han L. , Wang E. T. , Chen W. X. . ( 2009; ). Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline–alkaline soils in the north of China. . Int J Syst Evol Microbiol 59:, 3006–3011. [CrossRef].[PubMed].
    [Google Scholar]
  25. Marmur J. . ( 1961; ). A procedure for isolation of deoxyribonucleic acid form microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  26. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef].[PubMed].
    [Google Scholar]
  27. Martínez-Romero E. , Segovia L. , Mercante F. M. , Franco A. A. , Graham P. , Pardo M. A. . ( 1991; ). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. . Int J Syst Bacteriol 41:, 417–426. [CrossRef].[PubMed].
    [Google Scholar]
  28. Mhamdi R. , Laguerre G. , Aouani M. E. , Mars M. , Amarger N. . ( 2002; ). Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. . FEMS Microbiol Ecol 41:, 77–84. [CrossRef].[PubMed].
    [Google Scholar]
  29. Ophel K. , Kerr A. . ( 1990; ). Agrobacterium vitis sp. nov. for strains of Agrobacterium biovar 3 from grapevines. . Int J Syst Bacteriol 40:, 236–241. [CrossRef].
    [Google Scholar]
  30. Peng G. X. , Tan Z. Y. , Wang E. T. , Reinhold-Hurek B. , Chen W. F. , Chen W. X. . ( 2002; ). Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii . . Int J Syst Evol Microbiol 52:, 457–462.[PubMed].
    [Google Scholar]
  31. Quan Z. X. , Bae H. S. , Baek J. H. , Chen W. F. , Im W. T. , Lee S. T. . ( 2005; ). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. . Int J Syst Evol Microbiol 55:, 2543–2549. [CrossRef].[PubMed].
    [Google Scholar]
  32. Rasolomampianina R. , Bailly X. , Fetiarison R. , Rabevohitra R. , Béna G. , Ramaroson L. , Raherimandimby M. , Moulin L. , De Lajudie P. et al. ( 2005; ). Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-Proteobacteria. . Mol Ecol 14:, 4135–4146. [CrossRef].[PubMed].
    [Google Scholar]
  33. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed].
    [Google Scholar]
  34. Sawada H. , Ieki H. , Oyaizu H. , Matsumoto S. . ( 1993; ). Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes . . Int J Syst Bacteriol 43:, 694–702. [CrossRef].[PubMed].
    [Google Scholar]
  35. Schutter M. E. , Dick R. P. . ( 2000; ). Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. . Soil Sci Soc Am J 64:, 1659–1668. [CrossRef]
    [Google Scholar]
  36. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed].
    [Google Scholar]
  37. Tan Z. Y. , Xu X. D. , Wang E. T. , Gao J. L. , Martínez-Romero E. , Chen W. X. . ( 1997; ). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. . Int J Syst Bacteriol 47:, 874–879. [CrossRef].[PubMed].
    [Google Scholar]
  38. Taurian T. , Aguilar O. , Fabra A. . ( 2002; ). Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. . Symbiosis 33:, 59–72.
    [Google Scholar]
  39. Taurian T. , Ibanez F. , Fabra A. , Aguilar O. . ( 2006; ). Genetic diversity of rhizobia nodulating Arachis hypogaea L. in central Argentinean soils. . Plant Soil 282:, 41–52. [CrossRef]
    [Google Scholar]
  40. Terefework Z. , Kaijalainen S. , Lindström K. . ( 2001; ). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis . . J Biotechnol 91:, 169–180. [CrossRef].[PubMed].
    [Google Scholar]
  41. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. W. . ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef].[PubMed].
    [Google Scholar]
  42. Turner S. L. , Young J. P. . ( 2000; ). The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. . Mol Biol Evol 17:, 309–319.[PubMed].[CrossRef]
    [Google Scholar]
  43. Vincent J. . ( 1970; ). A Manual for the Practical Study of Root-Nodule Bacteria. Oxford, UK:: Blackwell Scientific Pubilications;.
    [Google Scholar]
  44. Wang E. T. , van Berkum P. , Beyene D. , Sui X. H. , Dorado O. , Chen W. X. , Martínez-Romero E. . ( 1998; ). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae . . Int J Syst Bacteriol 48:, 687–699. [CrossRef].[PubMed].
    [Google Scholar]
  45. Wang F. Q. , Wang E. T. , Zhang Y. F. , Chen W. X. . ( 2006; ). Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. . Syst Appl Microbiol 29:, 502–517. [CrossRef].[PubMed].
    [Google Scholar]
  46. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  47. Yan A. M. , Wang E. T. , Kan F. L. , Tan Z. Y. , Sui X. H. , Reinhold-Hurek B. , Chen W. X. . ( 2000; ). Sinorhizobium meliloti associated with Medicago sativa and Melilotus spp. in arid saline soils in Xinjiang, China. . Int J Syst Evol Microbiol 50:, 1887–1891.[PubMed].
    [Google Scholar]
  48. Young J. M. , Kuykendall L. D. , Martínez-Romero E. , Kerr A. , Sawada H. . ( 2001; ). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . . Int J Syst Evol Microbiol 51:, 89–103.[PubMed].[CrossRef]
    [Google Scholar]
  49. Zhao C. T. , Wang E. T. , Chen W. F. , Chen W. X. . ( 2008; ). Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China. . FEMS Microbiol Lett 286:, 263–273. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024943-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024943-0
Loading

Data & Media loading...

Supplements

Composition and proportion of cellular fatty acids [ PDF] (200 KB)

PDF

[ Single PDF of figures] (892 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error