1887

Abstract

Strains HM2-1 and HM2-2 were isolated from the faeces of a healthy infant and were characterized by determining their phenotypic and biochemical features and phylogenetic positions based on partial 16S rRNA gene sequence analysis. They were Gram-positive, obligately anaerobic, non-spore-forming, non-gas-producing, and catalase-negative non-motile rods. They did not grow at 15 or 45 °C in anaerobic bacterial culture medium, and their DNA G+C content was in the range 56–59 mol%. In enzyme activity tests, strains HM2-1 and HM2-2 were positive for α/β-galactosidases and α/β-glucosidases but negative for β-glucuronidase and cystine arylamidase. An analysis of the cell-wall composition of strains HM2-1 and HM2-2 revealed the presence of glutamic acid, alanine and lysine. The presence of fructose-6-phosphate phosphoketolase shows that isolates HM2-1 and HM2-2 are members of the genus . These two isolates belong to the same species of the genus . Strain HM2-2 was found to be related to JCM 1194 (97.4 % 16S rRNA gene sequence identity: 1480/1520 bp), JCM 1200 (97.2 %: 1472/1514 bp), ATCC 27534 (96.7 %: 1459/1509 bp) and ATCC 27535 (96.5 %: 1462/1515 bp). The predominant cellular fatty acids of strains HM2-1 and HM2-2 were 16 : 0 and 18 : 1ω9, with proportions greater than 18 % of the total. Phylogenetic analyses involving phenotypic characterization, DNA–DNA hybridization and partial 16S rRNA gene sequencing proves that the strains represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HM2-2 ( = JCM 15439  = DSM 21854).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024521-0
2011-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2610.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024521-0&mimeType=html&fmt=ahah

References

  1. Biavati B., Mattarelli P.. ( 1991;). Bifidobacterium ruminantium sp. nov. and Bifidobacterium merycicum sp. nov. from the rumens of cattle. . Int J Syst Bacteriol 41:, 163–168. [CrossRef][PubMed]
    [Google Scholar]
  2. Brenner D. M., Moeller M. J., Chey W. D., Schoenfeld P. S.. ( 2009;). The utility of probiotics in the treatment of irritable bowel syndrome: a systematic review. . Am J Gastroenterol 104:, 1033–1049, quiz 1050. [CrossRef][PubMed]
    [Google Scholar]
  3. Cavalli-Sforza L. L., Edwards A. W. F.. ( 1967;). Phylogenetic analysis. Models and estimation procedures. . Am J Hum Genet 19:, 233–257.[PubMed]
    [Google Scholar]
  4. Delcenserie V., Bechoux N., China B., Daube G., Gavini F.. ( 2005;). A PCR method for detection of bifidobacteria in raw milk and raw milk cheese: comparison with culture-based methods. . J Microbiol Methods 61:, 55–67. [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fuller R.. ( 1991;). Probiotics in human medicine. . Gut 32:, 439–442. [CrossRef][PubMed]
    [Google Scholar]
  8. Gavini F., Pourcher A. M., Neut C., Monget D., Romond C., Oger C., Izard D.. ( 1991;). Phenotypic differentiation of bifidobacteria of human and animal origins. . Int J Syst Bacteriol 41:, 548–557. [CrossRef][PubMed]
    [Google Scholar]
  9. Hoyles L., Inganäs E., Falsen E., Drancourt M., Weiss N., McCartney A. L., Collins M. D.. ( 2002;). Bifidobacterium scardovii sp. nov., from human sources. . Int J Syst Evol Microbiol 52:, 995–999. [CrossRef][PubMed]
    [Google Scholar]
  10. Jian W., Zhu L., Dong X.. ( 2001;). New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences. . Int J Syst Evol Microbiol 51:, 1633–1638. [CrossRef][PubMed]
    [Google Scholar]
  11. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Mikkelsen L. L., Bendixen C., Jakobsen M., Jensen B. B.. ( 2003;). Enumeration of bifidobacteria in gastrointestinal samples from piglets. . Appl Environ Microbiol 69:, 654–658. [CrossRef][PubMed]
    [Google Scholar]
  14. Mitsuoka T.. ( 1969;). [Comparative studies on lactobacilli from the faeces of man, swine and chickens]. . Zentralbl Bakteriol [Orig] 210:, 32–51 (in German).
    [Google Scholar]
  15. Okamoto M., Benno Y., Leung K.-P., Maeda N.. ( 2008;). Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. . Int J Syst Evol Microbiol 58:, 144–148. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sakata S., Kitahara M., Sakamoto M., Hayashi H., Fukuyama M., Benno Y.. ( 2002;). Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. . Int J Syst Evol Microbiol 52:, 1945–1951. [CrossRef][PubMed]
    [Google Scholar]
  18. Scardovi V.. ( 1986;). Genus Bifidobacterium. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1418–1434. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  19. Scardovi V., Crociani F.. ( 1974;). Bifidobacterium catenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: three new species and their deoxyribonucleic acid homology relationships. . Int J Syst Bacteriol 24:, 6–20. [CrossRef]
    [Google Scholar]
  20. Scardovi V., Trovatelli L. D., Biavati B., Zani G.. ( 1979;). Bifidobacterium cuniculi, Bifidobacterium choerinum, Bifidobacterium boum, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic acid homology relationships. . Int J Syst Bacteriol 29:, 291–311. [CrossRef]
    [Google Scholar]
  21. Simpson P. J., Ross R. P., Fitzgerald G. F., Stanton C.. ( 2004;). Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. . Int J Syst Evol Microbiol 54:, 401–406. [CrossRef][PubMed]
    [Google Scholar]
  22. Tan Y., Wu M., Liu H., Dong X., Guo Z., Song Z., Li Y., Cui Y., Song Y. et al. & other authors ( 2010;). Cellular fatty acids as chemical markers for differentiation of Yersinia pestis and Yersinia pseudotuberculosis. . Lett Appl Microbiol 50:, 104–111. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  24. Ventura M., Zink R., Fitzgerald G. F., van Sinderen D.. ( 2005;). Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing. . Appl Environ Microbiol 71:, 487–500. [CrossRef][PubMed]
    [Google Scholar]
  25. Ventura M., O’Flaherty S., Claesson M. J., Turroni F., Klaenhammer T. R., van Sinderen D., O’Toole P. W.. ( 2009;). Genome-scale analyses of health-promoting bacteria: probiogenomics. . Nat Rev Microbiol 7:, 61–71. [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  27. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  28. Whorwell P. J., Altringer L., Morel J., Bond Y., Charbonneau D., O’Mahony L., Kiely B., Shanahan F., Quigley E. M.. ( 2006;). Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. . Am J Gastroenterol 101:, 1581–1590. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhu L., Li W., Dong X.. ( 2003;). Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov.. Int J Syst Evol Microbiol 53:, 1619–1623. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024521-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024521-0
Loading

Data & Media loading...

Supplements

RAPD profiles of isolates HM2-1 and HM2-2T. Lanes: 1, λ- T14 I digest marker, 2: HM2-1 (103 primer), 3: HM2-2 (103 primer), 4: HM2-1 (127 primer), 5: HM2-2 (127 primer), 6: HM2-1 (173 primer), 7: HM2-2 (173 primer), 8: λ- T14 I digest marker. PCR amplifications were performed in a total volume of 25 µl containing 0.1 µg DNA, 1.25 U TaKaRa Ex , 2.5 µl 10× buffer (Mg -free), 3 mM MgCl , 2 µl dNTP mixture (2.5 mM each), 0.2 µM primer and 15.92 µl water. PCR amplification was performed using a TaKaRa PCR Thermal Cycler MP with 45 cycles consisting of denaturation at 94 °C for 60 s, annealing at 30 °C for 90 s and extension at 72 °C for 120 s.

IMAGE

[ Combined PDF] (81 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error