1887

Abstract

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLR, was isolated from faeces of the mollusc (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus . The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLR was investigated by using a polyphasic approach. Strain PLR was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLR had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family (phylum ‘’), within a clade comprising , , , and . The closest neighbours of strain PLR were and , sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLR represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PLR ( = CIP 110082 = DSM 22727).

Funding
This study was supported by the:
  • French National Association for Research (ANR; Recherche et Innovation en Biotechnologie (Award ANR-07-RIB-019)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024489-0
2011-08-01
2024-11-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1899.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024489-0&mimeType=html&fmt=ahah

References

  1. Barbeyron T., Kean K., Forterre P. 1984; DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160:586–590[PubMed]
    [Google Scholar]
  2. Barbeyron T., Carpentier F., L’Haridon S., Schüler M., Michel G., Amann R. 2008a; Description of Maribacter forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of the genus Maribacter . Int J Syst Evol Microbiol 58:790–797 [View Article][PubMed]
    [Google Scholar]
  3. Barbeyron T., L’Haridon S., Michel G., Czjzek M. 2008b; Mariniflexile fucanivorans sp. nov., a marine member of the Flavobacteriaceae that degrades sulphated fucans from brown algae. Int J Syst Evol Microbiol 58:2107–2113 [View Article][PubMed]
    [Google Scholar]
  4. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [View Article][PubMed]
    [Google Scholar]
  5. Bernardet J.-F., Nakagawa Y. 2006; An introduction to the family Flavobacteriaceae . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol. 7 pp. 455–480 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  6. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [View Article]
    [Google Scholar]
  7. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  8. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  11. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  12. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548[PubMed]
    [Google Scholar]
  13. Haug A., Nilsson N. H., Rømming C., Schaumburg K., Vialle J., Anthonsen T. 1976; The influence of borate and calcium on the gel formation of a sulfated polysaccharide from Ulva lactuca . Acta Chem Scand B 30:562–566 [View Article][PubMed]
    [Google Scholar]
  14. Hicks R. E., Amann R. I., Stahl D. A. 1992; Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 58:2158–2163[PubMed]
    [Google Scholar]
  15. Kane M. D., Poulsen L. K., Stahl D. A. 1993; Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59:682–686[PubMed]
    [Google Scholar]
  16. Katoh K., Misawa K., Kuma K., Miyata T. 2002; mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  17. Katoh K., Kuma K., Toh H., Miyata T. 2005; mafft version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518 [View Article][PubMed]
    [Google Scholar]
  18. Khan S. T., Nakagawa Y., Harayama S. 2006; Sandarakinotalea sediminis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae . Int J Syst Evol Microbiol 56:959–963 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Lahaye M., Axelos M. A. V. 1993; Gelling properties of water-soluble polysaccharides from proliferating marine green seaweeds (Ulva spp.). Carbohydr Polym 22:261–265 [View Article]
    [Google Scholar]
  21. Lahaye M., Robic A. 2007; Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774 [View Article][PubMed]
    [Google Scholar]
  22. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Dobretsov S., Wong P.-K., Pawlik J. R., Qian P.-Y. 2005; Nonlabens tegetincola gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a microbial mat in a subtropical estuary. Int J Syst Evol Microbiol 55:2279–2283 [View Article][PubMed]
    [Google Scholar]
  23. Lau S. C. K., Tsoi M. M. Y., Li X., Plakhotnikova I., Dobretsov S., Wu M., Wong P.-K., Pawlik J. R., Qian P.-Y. 2006; Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola . Int J Syst Evol Microbiol 56:181–185 [View Article][PubMed]
    [Google Scholar]
  24. Morand P., Briand X. 1996; Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39:491–516 [View Article]
    [Google Scholar]
  25. Nedashkovskaya O. I., Kwon K. K., Kim S.-J. 2009; Reclassification of Donghaeana dokdonensis Yoon et al. 2006 as Persicivirga dokdonensis comb. nov. and emended descriptions of the genus Persicivirga and of Persicivirga xylanidelens O’Sullivan et al. 2006. Int J Syst Evol Microbiol 59:824–827 [View Article][PubMed]
    [Google Scholar]
  26. O’Sullivan L. A., Rinna J., Humphreys G., Weightman A. J., Fry J. C. 2006; Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov.. Int J Syst Evol Microbiol 56:169–180 [View Article][PubMed]
    [Google Scholar]
  27. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [View Article][PubMed]
    [Google Scholar]
  28. Percival E., McDowell R. H. 1967 Chemistry and Enzymology of Marine Algal Polysaccharides London: Academic Press;
    [Google Scholar]
  29. Quemener B., Lahaye M., Bobin-Dubigeon C. 1997; Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. J Appl Phycol 9:179–188 [View Article]
    [Google Scholar]
  30. Reichenbach H., Kleinig H., Achenbach H. 1974; The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 101:131–144 [View Article][PubMed]
    [Google Scholar]
  31. Robic A., Sassi J.-F., Dion P., Lerat Y., Lahaye M. 2009; Seasonal variability of physicochemical and rheological properties of ulvan in two ulva species (Chlorophyta) from the Brittany coast. J Phycol 45:962–973 [View Article]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI.
  34. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp. 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Yoon J.-H., Kang S.-J., Lee C.-H., Oh T.-K. 2006; Donghaeana dokdonensis gen. nov., sp. nov., isolated from sea water. Int J Syst Evol Microbiol 56:187–191 [View Article][PubMed]
    [Google Scholar]
  36. ZoBell C. E. . ( 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.024489-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024489-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error