1887

Abstract

A Gram-negative, rod-shaped and non-spore-forming bacterial strain, JM27, was isolated from a tidal flat of Dongtan Wetland, Chongming Island, China. The strain formed smooth yellow colonies on R2A plates. Growth occurred at 10–37 °C (optimum, 30–37 °C), at pH 6.0–10.0 (optimum, pH 7.0–9.0) and in the presence of 0–1 % NaCl (optimum, 0 %). Catalase test was positive and oxidase test was negative. Ubiquinone 10 (Q10) was the major respiratory quinone. Cω7 and Cω6 were the most abundant fatty acids. Diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids. The DNA G+C content of strain JM27 was 66.4 mol%. The 16S rRNA gene sequence of the isolate showed highest similarity to that of H32 (96.4 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belonged to the genus of the family of the class . On the basis of phylogenetic analysis, whole-cell fatty acids, polar lipid compositions, and biochemical and physiological characteristics, strain JM27 is proposed to represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is JM27 ( = KCTC 22672  = CCTCC AB 209199).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024380-0
2011-09-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2035.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024380-0&mimeType=html&fmt=ahah

References

  1. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef].[PubMed]
    [Google Scholar]
  2. Cowan S. T., Steel K. J.. ( 1993;). Manual for the Identification of Medical Bacteria, , 3rd edn.. Edited by Barrow G. I., Feltham R. K. A... Cambridge:: Cambridge University Press;.
    [Google Scholar]
  3. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef].[PubMed]
    [Google Scholar]
  7. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  8. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics.. Methods Microbiol 19:, 161–207.
    [Google Scholar]
  9. Kumar N. R., Nair S., Langer S., Busse H.-J., Kämpfer P.. ( 2008;). Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 58:, 839–844. [CrossRef].[PubMed]
    [Google Scholar]
  10. Kwon K. K., Woo J.-H., Yang S.-H., Kang J.-H., Kang S. G., Kim S.-J., Sato T., Kato C.. ( 2007;). Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov.. Int J Syst Evol Microbiol 57:, 2207–2211. [CrossRef].[PubMed]
    [Google Scholar]
  11. Lai Q. L., Yuan J., Shao Z. Z.. ( 2009;). Altererythrobacter marinus sp. nov., isolated from deep seawater. . Int J Syst Evol Microbiol 59:, 2973–2976. [CrossRef].[PubMed]
    [Google Scholar]
  12. MacFaddin J. F.. ( 1985;). Media for Isolation–Cultivation–Identification–Maintenance of Medical Bacteria, vol. 1. . Baltimore:: Williams & Wilkins;.
  13. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  14. Park S. C., Baik K. S., Choe H. N., Lim C. H., Kim H. J., Ka J. O., Seong C. N.. ( 2011;). Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61:, 709–715. [CrossRef].[PubMed]
    [Google Scholar]
  15. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T.. ( 2005;). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. . Int J Syst Evol Microbiol 55:, 2543–2549. [CrossRef].[PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  18. Seo S. H., Lee S. D.. ( 2010;). Altererythrobacter marensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 60:, 307–311. [CrossRef].[PubMed]
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  20. Swofford D. L.. ( 1993;). paup. Phylogenetic analysis using parsimony, version 3.1.1. . Champaign, IL:: Illinois Natural History Survey;.
  21. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  23. Xu H.-X., Kawamura Y., Li N., Zhao L., Li T.-M., Li Z.-Y., Shu S., Ezaki T.. ( 2000;). A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. . Int J Syst Evol Microbiol 50:, 1463–1469. [CrossRef].[PubMed]
    [Google Scholar]
  24. Xu X.-W., Wu Y.-H., Wang C.-S., Wang X.-G., Oren A., Wu M.. ( 2009;). Croceicoccus marinus gen. nov., sp. nov., a yellow-pigmented bacterium from deep-sea sediment, and emended description of the family Erythrobacteraceae. . Int J Syst Evol Microbiol 59:, 2247–2253. [CrossRef].[PubMed]
    [Google Scholar]
  25. Yoon J.-H., Kang K. H., Yeo S.-H., Oh T.-K.. ( 2005;). Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 55:, 1167–1170. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024380-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024380-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error