1887

Abstract

Whilst searching for a molecular method to identify the different species of and , it was observed that the OXY-1 and OXY-2 -lactamase-producing isolates displayed two distinguishable enterobacterial repetitive intergenic consensus (ERIC)-1R profiles. It was hypothesized that the two groups of chromosomal -lactamases might correspond to two groups of strains in the taxon. To confirm this hypothesis, clinical isolates and reference strains of were studied by determination of the sequence of their genes, and of a partial fragment of their 16S rRNA (387 bp) and (512 bp) genes. The sequence data were phylogenetically analysed by using the parsimony method. Four clinical isolates possessed a gene and nine possessed a gene. The mean percentage of and 16S rRNA gene identity was >99 % within each group of strains, whereas it was 96·56±0·24 % for genes and 97·80±0·22 % for 16S rRNA genes between the group of strains harbouring the gene and the group harbouring the gene. The phylogenetic tree resulting from combined analysis of the 16S rRNA and datasets showed that the isolates were monophyletic and separated into two clades; these clades included strains with either the gene or the gene. This result was supported with high bootstrap values of 97 and 99 %, respectively. Moreover, the two groups of strains displayed distinct ERIC-1R profiles, with bands characteristic of each profile. Thus, the chromosomal gene sequence is able to delineate not only two groups of -lactamases in , but also two clades in the taxon, in a manner similar to the sequence of housekeeping genes. These results suggest that should be divided into two genetic groups, group OXY-1 represented by strain SL781 (=CIP 104963) and group OXY-2 by strain SL911 (=CIP 106098).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02408-0
2003-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530661.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02408-0&mimeType=html&fmt=ahah

References

  1. Ambler, R. P., Coulson, A. F. W., Frère, J. M., Ghuysen, J. M., Joris, B., Forsman, M., Levesque, R. C., Tiraby, G. & Waley, S. G. ( 1991; ). A standard numbering scheme for the class A β-lactamases. Biochem J 276, 269–270.
    [Google Scholar]
  2. Benoit, R., Danquechin-Dorval, E., Loulergue, J., Bacq, Y., Olivier, J. M., Audurier, A. & Metman, E. H. ( 1992; ). Diarrhée post-antibiotique: rôle de Klebsiella oxytoca. Gastroenterol Clin Biol 16, 860–864.
    [Google Scholar]
  3. Birnboim, H. C. ( 1983; ). A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100, 243–255.
    [Google Scholar]
  4. Boyeldieu, D., Vu-Thien, H., Dollfus, C. & 7 other authors ( 1999; ). Septicémies à Klebsiella oxytoca après transfusion de plaquettes. Pathol Biol 47, 405–407.
    [Google Scholar]
  5. Brisse, S. & Verhoef, J. ( 2001; ). Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51, 915–924.[CrossRef]
    [Google Scholar]
  6. Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. ( 2001; ). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51, 925–932.[CrossRef]
    [Google Scholar]
  7. Fournier, B. & Roy, P. H. ( 1997; ). Variability of chromosomally encoded β-lactamases from Klebsiella oxytoca. Antimicrob Agents Chemother 41, 1641–1648.
    [Google Scholar]
  8. Fournier, B., Arlet, G., Lagrange, P. H. & Philippon, A. ( 1994; ). Klebsiella oxytoca: resistance to aztreonam by overproduction of the chromosomally encoded β-lactamase. FEMS Microbiol Lett 116, 31–36.
    [Google Scholar]
  9. Fournier, B., Lu, C. Y., Lagrange, P. H., Krishnamoorthy, R. & Philippon, A. ( 1995; ). Point mutation in the Pribnow box, the molecular basis of β-lactamase overproduction in Klebsiella oxytoca. Antimicrob Agents Chemother 39, 1365–1368.[CrossRef]
    [Google Scholar]
  10. Fournier, B., Lagrange, P. H. & Philippon, A. ( 1996a; ). β-Lactamase gene promoters of 71 clinical strains of Klebsiella oxytoca. Antimicrob Agents Chemother 40, 460–463.
    [Google Scholar]
  11. Fournier, B., Roy, P. H., Lagrange, P. H. & Philippon, A. ( 1996b; ). Chromosomal β-lactamase genes of Klebsiella oxytoca are divided into two main groups, bla OXY-1 and bla OXY-2. Antimicrob Agents Chemother 40, 454–459.
    [Google Scholar]
  12. Granier, S. A., Leflon-Guibout, V., Nicolas-Chanoine, M.-H., Bush, K. & Goldstein, F. W. ( 2002a; ). The extended-spectrum K1 β-lactamase from Klebsiella oxytoca SC 10,436 is a member of the blaOXY-2 family of chromosomal Klebsiella enzymes. Antimicrob Agents Chemother 46, 2056–2057.[CrossRef]
    [Google Scholar]
  13. Granier, S. A., Nguyen Van, J.-C., Kitzis, M.-D., Goldstein, F. W., Leflon-Guibout, V. & Nicolas-Chanoine, M.-H. ( 2002b; ). First description of a TEM-30 (IRT-2)-producing Klebsiella oxytoca isolate. Antimicrob Agents Chemother 46, 1158–1159.[CrossRef]
    [Google Scholar]
  14. Högenauer, C., Hammer, H. F., Krejs, G. J. & Reisinger, E. C. ( 1998; ). Mechanisms and management of antibiotic-associated diarrhea. Clin Infect Dis 27, 702–710.[CrossRef]
    [Google Scholar]
  15. Huang, X. ( 1992; ). A contig assembly program based on sensitive detection of fragment overlaps. Genomics 14, 18–25.[CrossRef]
    [Google Scholar]
  16. Huelsenbeck, J. P., Bull, J. J. & Cunningham, C. W. ( 1996; ). Combining data in phylogenetic analysis. Trends Ecol Evol 11, 152–158.[CrossRef]
    [Google Scholar]
  17. Jeong, S. H., Kim, W. M., Chang, C. L. & 8 other authors ( 2001; ). Neonatal intensive care unit outbreak caused by a strain of Klebsiella oxytoca resistant to aztreonam due to overproduction of chromosomal β-lactamase. J Hosp Infect 48, 281–288.[CrossRef]
    [Google Scholar]
  18. Jones, G., Triep, S., Koek, A. & Dijkshoorn, L. ( 1999; ). RAPD typing of Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens and Pseudomonas aeruginosa isolates using standardized reagents. Clin Microbiol Infect 5, 270–276.[CrossRef]
    [Google Scholar]
  19. Kimura, K., Arakawa, Y., Ohsuka, S., Ito, H., Suzuki, K., Kurokawa, H., Kato, N. & Ohta, M. ( 1996; ). Molecular aspects of high-level resistance to sulbactam-cefoperazone in Klebsiella oxytoca clinical isolates. Antimicrob Agents Chemother 40, 1988–1994.
    [Google Scholar]
  20. Mollet, C., Drancourt, M. & Raoult, D. ( 1997; ). rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26, 1005–1011.[CrossRef]
    [Google Scholar]
  21. Monnet, D., Freney, J., Brun, Y., Boeufgras, J. M. & Fleurette, J. ( 1991; ). Difficulties in identifying Klebsiella strains of clinical origin. Zentbl Bakteriol 274, 456–464.[CrossRef]
    [Google Scholar]
  22. Morgenstern, B. ( 1999; ). dialign 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15, 211–218.[CrossRef]
    [Google Scholar]
  23. Olive, D. M. & Bean, P. ( 1999; ). Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37, 1661–1669.
    [Google Scholar]
  24. Palys, T., Nakamura, L. K. & Cohan, F. M. ( 1997; ). Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol 47, 1145–1156.[CrossRef]
    [Google Scholar]
  25. Reiss, I., Borkhardt, A., Füssle, R., Sziegoleit, A. & Gortner, L. ( 2000; ). Disinfectant contaminated with Klebsiella oxytoca as a source of sepsis in babies. Lancet 356, 310.
    [Google Scholar]
  26. Sirot, D., Labia, R., Pouedras, P., Chanal-Claris, C., Cerceau, C. & Sirot, J. ( 1998; ). Inhibitor-resistant OXY-2-derived β-lactamase produced by Klebsiella oxytoca. Antimicrob Agents Chemother 42, 2184–2187.
    [Google Scholar]
  27. Stock, I. & Wiedemann, B. ( 2001; ). Natural antibiotic susceptibility of Klebsiella pneumoniae, K. oxytoca, K. planticola, K. ornithinolytica and K. terrigena strains. J Med Microbiol 50, 396–406.
    [Google Scholar]
  28. Swofford, D. L. ( 1998; ). paup*, Phylogenetic Analysis Using Parsimony (*and other methods), version 4.b5. Champaign: Illinois Natural History Survey.
  29. Tatusova, T. A. & Madden, T. L. ( 1999; ). blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174, 247–250.[CrossRef]
    [Google Scholar]
  30. Terrier, F., Algayres, J. P., Le Romancer, J. M., Gerome, P., Bili, H. & Daly, J. P. ( 1995; ). Diarrhée aiguë hémorragique à Klebsiella oxytoca: association à la prise de virginamycine? Presse Med 24, 1446.
    [Google Scholar]
  31. Wu, S. W., Dornbusch, K. & Kronvall, G. ( 1999; ). Genetic chracterization of resistance to extended-spectrum β-lactams in Klebsiella oxytoca isolates recovered from patients with septicemia at hospitals in the Stockholm area. Antimicrob Agents Chemother 43, 1294–1297.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02408-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02408-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 661 - 668

Alignment of consensus 16S rDNA sequences

Alignment of consensus gene sequences

[Single PDF](556 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error