1887

Abstract

Five Gram-negative, motile, aerobic to microaerophilic spirilla were isolated from various depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strains are oxidase- and catalase-positive, metabolize a variety of sugars and carboxylic acids and have an absolute requirement for sodium ions. The predominant fatty acids of the organisms are C 7, C and C 7, with C 3-OH, C 3-OH, C 3-OH, C 3-OH, C 3-OH and C present in smaller amounts. The main polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylamine. The DNA base composition of the strains is 54–55 mol% G+C. 16S rRNA gene sequence comparisons show that the isolates are related to the genera , , , and in the -. Morphological, physiological and genotypic differences from these previously described genera support the description of a novel genus and species, gen. nov., sp. nov. The type strain is EL-105 (=DSM 12546=CECT 5721).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02406-0
2003-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530653.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02406-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  2. Collins, M. D., Lawson, P. A., Labrenz, M., Tindall, B. J., Weiss, N. & Hirsch, P. ( 2002; ). Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. Int J Syst Evol Microbiol 52, 1145–1150.[CrossRef]
    [Google Scholar]
  3. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  4. Franzmann, P. D. & Tindall, B. J. ( 1990; ). A chemotaxonomic study of members of the family Halomonadaceae. Syst Appl Microbiol 13, 142–147.[CrossRef]
    [Google Scholar]
  5. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E. ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef]
    [Google Scholar]
  6. Garriga, M., Ehrmann, M. A., Arnau, J., Hugas, M. & Vogel, R. F. ( 1998; ). Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48, 677–686.[CrossRef]
    [Google Scholar]
  7. Hamana, K., Sakane, T. & Yokota, A. ( 1994; ). Polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum, and Spirillum. J Gen Appl Microbiol 40, 75–82.[CrossRef]
    [Google Scholar]
  8. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. (editors) ( 1994; ). Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins.
  9. Hylemon, P. B., Wells, J. S. Jr, Krieg N. R. & Jannasch, H. W. ( 1973; ). The genus Spirillum: a taxonomic study. Int J Syst Bacteriol 23, 340–380.[CrossRef]
    [Google Scholar]
  10. James, S. R., Burton, H., McMeekin, T. A. & Mancuso, C. A. ( 1994; ). Seasonal abundance of Halomonas meridiana, Halomonas subglaciescola, Flavobacterium gondwanense and Flavobacterium salegens in four Antarctic lakes. Antarct Sci 6, 325–332.
    [Google Scholar]
  11. Krieg, N. R. ( 1984; ). Aerobic/microaerophilic, motile, helical/vibroid Gram-negative bacteria. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 104–110. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  12. Labrenz, M. & Hirsch, P. ( 2001; ). Physiological diversity and adaptations of aerobic heterotrophic bacteria from different depths of hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). Polar Biol 24, 320–327.[CrossRef]
    [Google Scholar]
  13. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Braker, G. & Hirsch, P. ( 1998; ). Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48, 1363–1372.[CrossRef]
    [Google Scholar]
  14. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Schumann, P. & Hirsch, P. ( 1999; ). Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49, 137–147.[CrossRef]
    [Google Scholar]
  15. Labrenz, M., Tindall, B. J., Lawson, P. A., Collins, M. D., Schumann, P. & Hirsch, P. ( 2000; ). Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50, 303–313.[CrossRef]
    [Google Scholar]
  16. Lawson, P. A., Collins, M. D., Schumann, P., Tindall, B. J., Hirsch, P. & Labrenz, M. ( 2000; ). New ll-diaminopimelic acid-containing actinomycetes from hypersaline, heliothermal and meromictic Antarctic Ekho Lake: Nocardioides aquaticus sp. nov. and Friedmanniella lacustris sp. nov. Syst Appl Microbiol 23, 219–229.[CrossRef]
    [Google Scholar]
  17. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  18. Nicholas, K. B., Nicholas, H. B., Jr & Deerfield, D. W., II ( 1997; ). GeneDoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4, 14.
    [Google Scholar]
  19. Okamoto, T., Taguchi, H., Nakamura, K., Ikenaga, H., Kuraishi, H. & Yamasato, K. ( 1993; ). Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from sap. Arch Microbiol 160, 333–337.
    [Google Scholar]
  20. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  21. Pearson, W. & Lipman, D. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  22. Perriss, S. J. & Laybourn-Parry, J. ( 1997; ). Microbial communities in saline lakes of the Vestfold Hills (eastern Antarctica). Polar Biol 18, 135–144.[CrossRef]
    [Google Scholar]
  23. Pfennig, N. & Wagener, S. ( 1986; ). An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4, 303–306.[CrossRef]
    [Google Scholar]
  24. Pot, B., Gillis, M., Hoste, B., Van de Velde, A., Bekaert, F., Kersters, K. & De Ley, J. ( 1989; ). Intra- and intergeneric relationships of the genus Oceanospirillum. Int J Syst Bacteriol 39, 23–34.[CrossRef]
    [Google Scholar]
  25. Rasmussen, S. W. ( 1995; ). DNATools: a software package for DNA sequence analysis. Carlsberg Laboratory, Copenhagen.
  26. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α, ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Sakane, T. & Yokota, A. ( 1994; ). Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum, Magnetospirillum, and Oceanospirillum. Syst Appl Microbiol 17, 128–134.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Satomi, M., Kimura, B., Hayashi, M., Shouzen, Y., Okuzumi, M. & Fujii, T. ( 1998; ). Marinospirillum gen. nov., with descriptions of Marinospirillum megaterium sp. nov., isolated from kusaya gravy, and transfer of Oceanospirillum minutulum to Marinospirillum minutulum comb. nov. Int J Syst Bacteriol 48, 1341–1348.[CrossRef]
    [Google Scholar]
  31. Satomi, M., Kimura, B., Hamada, T., Harayama, S. & Fujii, T. ( 2002; ). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52, 739–747.[CrossRef]
    [Google Scholar]
  32. Spröer, C., Lang, E., Hobeck, P., Burghardt, J., Stackebrandt, E. & Tindall, B. J. ( 1998; ). Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus. Int J Syst Bacteriol 48, 1445–1448.[CrossRef]
    [Google Scholar]
  33. Strunk, O. & Ludwig, W. ( 1995; ). arb: a software environment for sequence data. Department of Microbiology, Technical University of Munich, Germany.
  34. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  35. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  36. Ventosa, A., Gutierrez, M. C., Garcia, M. T. & Ruiz-Berraquero, F. ( 1989; ). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef]
    [Google Scholar]
  37. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02406-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02406-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 653 - 660

Differences in physiological properties of strains of

Differences in metabolism of carbon sources by strains of

Characteristic 16S rDNA signature nucleotides

[Single PDF](30 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error