1887

Abstract

Two Gram-reaction-negative, yellow–orange-pigmented, rod-shaped bacterial strains, designated YC6722 and YC6723, were isolated from rhizosphere soil samples collected from rice fields in Jinju, Korea. Strains YC6722 and YC6723 grew optimally at 25–30 °C and at pH 7.0–8.5. Phylogenetic analyses of 16S rRNA gene sequences showed that strain YC6722 was most closely related to TDMA-16 (96.6 % sequence similarity) and strain YC6723 was related most closely to JSS7 (96.9 %). The two strains contained ubiquinone-10 (Q-10) as the major respiratory quinone system and -homospermidine as the major polyamine. The G+C contents of the genomic DNA of strains YC6722 and YC6723 were 63.3 and 61.0 mol%, respectively. The major fatty acid was Cω7. The polar lipids detected in the two strains were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, sphingoglycolipid, phosphatidyldimethylethanolamine and other unknown lipids. On the basis of their phylogenetic positions, and their biochemical and phenotypic characteristics, strains YC6722 and YC6723 represent two novel species of the genus , for which the names sp. nov. ( = KCTC 22476  = DSM 21455) and sp. nov. (KCTC 22477  = DSM 21457) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023846-0
2011-10-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2389.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023846-0&mimeType=html&fmt=ahah

References

  1. Asker D. , Beppu T. , Ueda K. . ( 2007a; ). Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. . Int J Syst Evol Microbiol 57:, 1435–1441. [CrossRef] [PubMed]
    [Google Scholar]
  2. Asker D. , Beppu T. , Ueda K. . ( 2007b; ). Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. . FEMS Microbiol Lett 273:, 140–148. [CrossRef] [PubMed]
    [Google Scholar]
  3. Aslam Z. , Yasir M. , Jeon C. O. , Chung Y. R. . ( 2009; ). Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). . Int J Syst Evol Microbiol 59:, 675–680. [CrossRef] [PubMed]
    [Google Scholar]
  4. Atlas R. M. . ( 1993; ). Handbook of Microbiological Media. Edited by Parks L. C. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  5. Ausubel F. W. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . ( 1995; ). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  6. Brown A. E. . ( 2007; ). Benson’s Microbiological Applications: Laboratory Manual in General Microbiology. New York:: McGraw-Hill;.
    [Google Scholar]
  7. Buonaurio R. , Stravato V. M. , Kosako Y. , Fujiwara N. , Naka T. , Kobayashi K. , Cappelli C. , Yabuuchi E. . ( 2002; ). Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. . Int J Syst Evol Microbiol 52:, 2081–2087. [CrossRef] [PubMed]
    [Google Scholar]
  8. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8.[CrossRef]
    [Google Scholar]
  9. Busse H. J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  10. Busse H. J. , Kämpfer P. , Denner E. B. . ( 1999; ). Chemotaxonomic characterisation of Sphingomonas . . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
  11. Busse H. J. , Denner E. B. M. , Buczolits S. , Salkinoja-Salonen M. , Bennasar A. , Kämpfer P. . ( 2003; ). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . . Int J Syst Evol Microbiol 53:, 1253–1260. [CrossRef] [PubMed]
    [Google Scholar]
  12. Busse H. J. , Hauser E. , Kämpfer P. . ( 2005; ). Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov.. Int J Syst Evol Microbiol 55:, 2565–2569. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cappuccino J. G. , Sherman N. . ( 2002; ). Microbiology: a Laboratory Manual, , 6th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  14. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dittmer J. C. , Lester R. L. . ( 1964; ). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 15:, 126–127.[PubMed]
    [Google Scholar]
  16. Felsenstein J. . ( 2002; ). phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  17. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  18. Huang H. D. , Wang W. , Ma T. , Li G. Q. , Liang F. L. , Liu R. L. . ( 2009; ). Sphingomonas sanxanigenens sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 719–723. [CrossRef] [PubMed]
    [Google Scholar]
  19. Huo Y. Y. , Xu X. W. , Liu S. P. , Cui H. L. , Li X. , Wu M. . ( 2010; ). Sphingomonas rubra sp. nov., isolated from wastewater in a bioreactor. . Int J Syst Evol Microbiol 61:, 1028–1032. [CrossRef] [PubMed]
    [Google Scholar]
  20. Janssen P. H. , Yates P. S. , Grinton B. E. , Taylor P. M. , Sait M. . ( 2002; ). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia . . Appl Environ Microbiol 68:, 2391–2396. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim M. K. , Schubert K. , Im W. T. , Kim K. H. , Lee S. T. , Overmann J. . ( 2007; ). Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. . Int J Syst Evol Microbiol 57:, 1527–1534. [CrossRef] [PubMed]
    [Google Scholar]
  22. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  23. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  24. Lee J. S. , Shin Y. K. , Yoon J. H. , Takeuchi M. , Pyun Y. R. , Park Y. H. . ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . Int J Syst Evol Microbiol 51:, 1491–1498.[PubMed]
    [Google Scholar]
  25. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  26. Minnikin D. E. , Patel P. V. , Alshamaony L. , Goodfellow M. . ( 1977; ). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  27. Nigam A. , Jit S. , Lal R. . ( 2010; ). Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. . Int J Syst Evol Microbiol 60:, 1038–1043. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rivas R. , Abril A. , Trujillo M. E. , Velázquez E. . ( 2004; ). Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. . Int J Syst Evol Microbiol 54:, 2147–2150. [CrossRef] [PubMed]
    [Google Scholar]
  29. Roh S. W. , Kim K. H. , Nam Y. D. , Chang H. W. , Kim M. S. , Oh H. M. , Bae J. W. . ( 2009; ). Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 59:, 1359–1363. [CrossRef] [PubMed]
    [Google Scholar]
  30. Romanenko L. A. , Tanaka N. , Frolova G. M. , Mikhailov V. V. . ( 2009; ). Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica . . Int J Syst Evol Microbiol 59:, 1179–1182. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ross H. N. M. , Grant W. D. , Harris J. E. . ( 1985; ). Lipids in archaebacterial taxonomy. . In Chemical Methods in Bacterial Systematics, pp. 289–300. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  32. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  33. Takeuchi M. , Hiraishi A. . ( 2001; ). Taxonomic significance of 2-hydroxy fatty acid profiles of the species in the genus Sphingomonas and related taxa. . Inst Ferment Res Commun (Osaka) 20:, 72–82.
    [Google Scholar]
  34. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  35. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  36. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  37. Xin H. , Itoh T. , Zhou P. , Suzuki K. , Kamekura M. , Nakase T. . ( 2000; ). Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. . Int J Syst Evol Microbiol 50:, 1297–1303. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119.[PubMed] [CrossRef]
    [Google Scholar]
  39. Yabuuchi E. , Kosako Y. , Fujiwara N. , Naka T. , Matsunaga I. , Ogura H. , Kobayashi K. . ( 2002; ). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yoon J. H. , Lee M. H. , Kang S. J. , Lee S. Y. , Oh T. K. . ( 2006; ). Sphingomonas dokdonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56:, 2165–2169. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yoon J. H. , Park S. , Kang S. J. , Kim W. , Oh T. K. . ( 2009; ). Sphingomonas hankookensis sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 59:, 2788–2793. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zhang Y. Q. , Chen Y. G. , Li W. J. , Tian X. P. , Xu L. H. , Jiang C. L. . ( 2005; ). Sphingomonas yunnanensis sp. nov., a novel Gram-negative bacterium from a contaminated plate. . Int J Syst Evol Microbiol 55:, 2361–2364. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang J. Y. , Liu X. Y. , Liu S. J. . ( 2010; ). Sphingomonas changbaiensis sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 790–795. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zhang D. C. , Busse H. J. , Liu H. C. , Zhou Y. G. , Schinner F. , Margesin R. . ( 2011; ). Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. . Int J Syst Evol Microbiol 61:, 587–591. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023846-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023846-0
Loading

Data & Media loading...

Supplements

Transmission electron micrographs of cells of strains YC6722 (a) and YC6723 (b) from 3-day-old cultures cultivated in R2A broth.

IMAGE

Phylogenetic tree reconstructed from comparative analysis of 16S rRNA gene sequences showing the relationship between strains YC6722 and YC6723 with the type strains of related species. [PDF](30KB)

PDF

Two-dimensional TLC of polar lipids from strains YC6722 (a) and YC6723 (b). For detection of polar lipids, phosphomolybdic acid solution (PG, DPG, PGL, L, PE, PDE and SGL), ninhydrin (PE), 1-naphthol reagent (PG, DPG, PGL, PE, PDE and SGL) and Zinzadze reagent (PG, DPG, PGL, PE, PDE and SGL) were applied. PE, phosphatidylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; SGL, sphingoglycolipid; PDE, phosphatidyldimethylethanolamine; L1-3, unknown lipids; PGL1-6, unknown phosphoglycolipids.

IMAGE

Cellular fatty acid composition (%) of strains YC6722 and YC6723 and the type strains of related species. [PDF](49KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error