1887

Abstract

Two novel Gram-negative, anaerobic, non-spore-forming, butyrate-producing bacterial species, strains Mz 5 and JK 615, were isolated from the rumen fluid of cow and sheep. Both strains were curved rods that were motile by means of single polar or subpolar flagellum and common in the rumen microbial ecosystem. Strain Mz 5 produced high xylanase, proteinase, pectin hydrolase and DNase activities; 1,4-β-endoglucanase was also detected in the culture medium. The bacterium utilized a wide range of carbohydrates. Glucose was fermented to formate, butyrate, lactate, succinate and ethanol. The DNA G+C content was 42·1 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain Mz 5 and related isolates were located in clostridial cluster XIVa and were closely related to , , and . The name proposed for this novel bacterium is ; the type strain is Mz 5 (=DSM 14809 =ATCC BAA-455). Strain JK 615 produced no fibrolytic activity, but utilized a wide range of carbohydrates. Glucose was fermented to formate, acetate, butyrate and ethanol. The DNA G+C content was 44·8 mol%. The complete 16S rDNA sequence was obtained and phylogenetic relationships were determined. Strain JK 615 was located in clostridial cluster XIVa and was closely related to , and . The name proposed for this novel bacterium is ; the type strain is JK 615 (=DSM 14810 =ATCC BAA-456).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02345-0
2003-01-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530201.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02345-0&mimeType=html&fmt=ahah

References

  1. Attwood, G. T. & Reilly, K. ( 1995; ). Identification of proteolytic rumen bacteria isolated from New Zealand cattle. J Appl Bacteriol 79, 22–29.[CrossRef]
    [Google Scholar]
  2. Attwood, G. T., Reilly, K. & Patel, B. K. C. ( 1996; ). Clostridium proteoclasticum sp. nov., a novel proteolytic bacterium from the bovine rumen. Int J Syst Bacteriol 46, 753–758.[CrossRef]
    [Google Scholar]
  3. Avguštin, G., Wallace, R. J. & Flint, H. J. ( 1997; ). Phylogenetic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47, 284–288.[CrossRef]
    [Google Scholar]
  4. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C. & Flint, H. J. ( 2000; ). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 1654–1661.[CrossRef]
    [Google Scholar]
  5. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef]
    [Google Scholar]
  6. Diez-Gonzalez, F., Bond, D. R., Jennings, E. & Russell, J. B. ( 1999; ). Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production and phylogeny. Arch Microbiol 171, 324–330.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1989; ). phylip – Phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  9. Forster, R. J., Teather, R. M., Gong, J. & Deng, S. J. ( 1996; ). 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23, 218–222.[CrossRef]
    [Google Scholar]
  10. Forster, R. J., Gong, J. & Teather, R. M. ( 1997; ). Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen. Appl Environ Microbiol 63, 1256–1260.
    [Google Scholar]
  11. Gregg, K., Cooper, C. L., Schafer, D. J., Sharpe, H., Beard, C. E., Allen, G. & Xu, J. ( 1994; ). Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Biotechnology 12, 1361–1365.[CrossRef]
    [Google Scholar]
  12. Hall, T. A. ( 1999; ). bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  13. Hazlewood, G. P., Theodorou, M. K., Hutchings, A., Jordan, D. J. & Galfre, G. ( 1986; ). Preparation and characterization of monoclonal antibodies to a Butyrivibrio sp. and their potential use in the identification of rumen butyrivibrios, using enzyme-linked immunosorbent assay. J Gen Microbiol 132, 43–52.
    [Google Scholar]
  14. Hespell, R. B., Kato, K. & Costerton, J. W. ( 1993; ). Characterization of the cell wall of Butyrivibrio species. Can J Microbiol 39, 912–921.[CrossRef]
    [Google Scholar]
  15. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  16. Hudman, J. F. & Gregg, K. ( 1989; ). Genetic diversity among strains of bacteria from the rumen. Curr Microbiol 19, 313–318.[CrossRef]
    [Google Scholar]
  17. Hungate, E. R. ( 1966; ). The Rumen and its Microbes. New York: Academic Press.
  18. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  19. Kopečný, J. & Bartoš, S. ( 1990; ). Activity of hydrolases in the gastrointestinal tract of goats. Small Rumin Res 3, 25–35.[CrossRef]
    [Google Scholar]
  20. Kopečný, J., Marinšek-Logar, R. & Kobayashi, Y. ( 2001; ). Phenotypic and genetic data supporting reclassification of Butyrivibrio fibrisolvens isolates. Folia Microbiol 46, 45–48.[CrossRef]
    [Google Scholar]
  21. McAllister, T. A., Cheng, K. J., Rode, L. M. & Forsberg, C. W. ( 1990; ). Digestion of barley, maize and wheat by selected species of ruminal bacteria. Appl Environ Microbiol 56, 46–53.
    [Google Scholar]
  22. Maidak, B. L., Larsen, N., McCaughey, M. J., Overbeek, R., Olsen, G. J., Foge, K., Blandy, J. & Woese, C. R. ( 1994; ). The ribosomal database project. Nucleic Acids Res 22, 3485–3487.[CrossRef]
    [Google Scholar]
  23. Mannarelli, B. M., Stack, R. J., Lee, D. & Ericsson, L. ( 1990; ). Taxonomic relatedness of Butyrivibrio, Lachnospira, Roseburia, and Eubacterium species as determined by DNA hybridization and extracellular-polysaccharide analysis. Int J Syst Bacteriol 40, 370–378.[CrossRef]
    [Google Scholar]
  24. Margherita, S. S., Hungate, R. E. & Storz, H. ( 1964; ). Variation in rumen Butyrivibrio strains. J Bacteriol 87, 1304–1308.
    [Google Scholar]
  25. Mayberry, W. R., Lambe, D. W., Jr & Ferguson, K. P. ( 1982; ). Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32, 21–27.[CrossRef]
    [Google Scholar]
  26. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  27. Miyagawa, E. ( 1982; ). Cellular fatty acid and fatty aldehyde composition of rumen bacteria. J Gen Appl Microbiol 28, 389–408.[CrossRef]
    [Google Scholar]
  28. Moore, L. V. H., Bourne, D. M. & Moore, W. E. C. ( 1994; ). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic Gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef]
    [Google Scholar]
  29. Moore, W. E. C., Johnson, J. L. & Holdeman, L. V. ( 1976; ). Emendation of Bacteriodaceae and Butyrivibrio and description of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 26, 238–252.[CrossRef]
    [Google Scholar]
  30. Mrázek, J. & Kopečný, J. ( 2001; ). Development of competitive PCR for detection of Butyrivibrio fibrisolvens in the rumen. Folia Microbiol 46, 63–65.[CrossRef]
    [Google Scholar]
  31. Robards, A. W. & Wilson, A. J. ( 1993; ). Procedures in Electron Microscopy. New York: John Wiley.
    [Google Scholar]
  32. Roche, C., Albertyn, H., Van Gylswyk, N. O. & Kistner, A. ( 1973; ). The growth response of cellulolytic acetate-utilizing and acetate-producing butyrivibrios to volatile fatty acids and other nutrients. J Gen Microbiol 78, 253–260.[CrossRef]
    [Google Scholar]
  33. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Stack, R. J. ( 1988; ). Neutral sugar composition of extracellular polysaccharides produced by strains of Butyrivibrio fibrisolvens. Appl Environ Microbiol 54, 878–883.
    [Google Scholar]
  36. Stewart, C. S., Flint, H. J. & Bryant, M. P. ( 1997; ). The rumen bacteria. In The Rumen Microbial Ecosystem, pp. 35–38. Edited by P. N. Hobson & C. S. Stewart. London: Blackie Academic & Professional.
  37. Stoakes, L., Kelly, T., Schieven, B., Harley, D., Ramos, M., Lannigan, R., Groves, D. & Hussain, Z. ( 1991; ). Gas-liquid chromatographic analysis of cellular fatty acids for identification of Gram-negative anaerobic bacilli. J Clin Microbiol 29, 2636–2638.
    [Google Scholar]
  38. Tajima, K., Aminov, R. I., Nagamine, T., Ogata, K., Nakamura, M., Matsui, H. & Benno, Y. ( 1999; ). Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol Ecol 29, 159–169.[CrossRef]
    [Google Scholar]
  39. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  40. Van der Toorn, J. J. K. T. & Van Gylswyk, N. O. ( 1985; ). Xylan-digesting bacteria from the rumen of sheep fed maize straw diets. J Gen Microbiol 131, 2601–2607.
    [Google Scholar]
  41. Van Gylswyk, N. O., Hippe, H. & Rainey, F. A. ( 1996; ). Pseudobutyrivibrio ruminis gen. nov., sp. nov., a butyrate-producing bacterium from the rumen that closely resembles Butyrivibrio fibrisolvens in phenotype. Int J Syst Bacteriol 46, 559–563.[CrossRef]
    [Google Scholar]
  42. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  43. Willems, A., Amat-Marco, M. & Collins, M. D. ( 1996; ). Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the Gram-positive bacteria. Int J Syst Bacteriol 46, 195–199.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02345-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02345-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error