1887

Abstract

The three As(III)-oxidizing members of the class , and ‘’ were isolated from mining sites in geographically distinct areas, namely Japan, Germany and France, respectively. They are all able to oxidize As(III) but only ‘’ and show efficient autotrophic growth with As(III) and are able to grow on a sole carbon source. These two organisms are also motile, whereas is not. Only can grow autotrophically on chalcopyrite. The three strains share >99 % gene sequence similarity with each other based on their 16S rRNA genes and 16S–23S ITS regions. DNA–DNA hybridization results are above, or close to, the threshold value of 70 % recommended for the definition of bacterial species. The three taxa show very similar fatty acid profiles with differences only in five minor fatty acid components. They possess phylogenetic and chemotaxonomic similarities supporting the reclassification of these taxa as a single species. We propose that ‘’ and be reassigned as strains of (type strain DSM 17897).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023408-0
2011-12-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2816.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023408-0&mimeType=html&fmt=ahah

References

  1. Battaglia-Brunet F. , Dictor M.-C. , Garrido F. , Crouzet C. , Morin D. , Dekeyser K. , Clarens M. , Baranger P. . ( 2002; ). An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. . J Appl Microbiol 93:, 656–667. [CrossRef]
    [Google Scholar]
  2. Battaglia-Brunet F. , Joulian C. , Garrido F. , Dictor M.-C. , Morin D. , Coupland K. , Johnson D. B. , Hallberg K. B. , Baranger P. . ( 2006; ). Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. . Antonie van Leeuwenhoek 89:, 99–108. [CrossRef]
    [Google Scholar]
  3. Bruneel O. , Personné J. C. , Casiot C. , Leblanc M. , Elbaz-Poulichet F. , Mahler B. J. , Le Flèche A. , Grimont P. A. . ( 2003; ). Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). . J Appl Microbiol 95:, 492–499. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  5. Challan Belval S. , Garnier F. , Michel C. , Chautard S. , Breeze D. , Garrido F. . ( 2009; ). Enhancing pozzolana colonization by As(III)-oxidizing bacteria for bioremediation purposes. . Appl Microbiol Biotechnol 84:, 565–573. [CrossRef] [PubMed]
    [Google Scholar]
  6. Coupland K. , Battaglia-Brunet F. , Hallberg K. B. , Dictor M.-C. , Garrido F. , Johnson D. B. . ( 2004; ). Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp.. In Biohydrometallurgy; a Sustainable Technology in Evolution, pp. 639–646. Edited by Tsezos M. , Hatzikioseyian A. , Remoudaki E. . . Zografou, Greece:: National Technical University of Athens;.
    [Google Scholar]
  7. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  8. Duquesne K. , Lieutaud A. , Ratouchniak J. , Yarzabal A. , Bonnefoy V. . ( 2007; ). Mechanisms of arsenite elimination by Thiomonas sp. isolated from Carnoulès acid mine drainage. . Eur J Soil Biol 43:, 351–355. [CrossRef]
    [Google Scholar]
  9. García-Martínez J. , Acinas S. G. , Antón A. I. , Rodríguez-Valera F. . ( 1999; ). Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. . J Microbiol Methods 36:, 55–64. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gürtler V. , Stanisich V. A. . ( 1996; ). New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. . Microbiology 142:, 3–16. [CrossRef] [PubMed]
    [Google Scholar]
  11. Huber H. , Stetter K. O. . ( 1990; ). Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. . Appl Environ Microbiol 56:, 315–322.[PubMed]
    [Google Scholar]
  12. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  13. Katayama Y. , Uchino Y. , Wood A. P. , Kelly D. P. . ( 2006; ). Confirmation of Thiomonas delicata (formerly Thiobacillus delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to the genus. . Int J Syst Evol Microbiol 56:, 2553–2557. [CrossRef] [PubMed]
    [Google Scholar]
  14. Katayama-Fujimura Y. , Tsuzaki N. , Kuraishi H. . ( 1982; ). Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus . . J Gen Microbiol 128:, 1599–1611.
    [Google Scholar]
  15. Katayama-Fujimura Y. , Kawashima I. , Tsuzaki N. , Kuraishi H. . ( 1984; ). Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis, and Thiobacillus intermedius . . Int J Syst Bacteriol 34:, 139–144. [CrossRef]
    [Google Scholar]
  16. Kelly D. P. , Wood A. P. . ( 2005; ). Genus incertae sedis XVIII. Thiomonas Moreira and Amils 1997. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, part C, pp. 757–759. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  17. Kelly D. P. , Wood A. P. . ( 2006; ). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 56:, 925–927. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kelly D. P. , Uchino Y. , Huber H. , Amils R. , Wood A. P. . ( 2007; ). Reassessment of the phylogenetic relationships of Thiomonas cuprina . . Int J Syst Evol Microbiol 57:, 2720–2724. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kent A. D. , Jones S. E. , Yannarell A. C. , Graham J. M. , Lauster G. H. , Kratz T. K. , Triplett E. W. . ( 2004; ). Annual patterns in bacterioplankton community variability in a humic lake. . Microb Ecol 48:, 550–560. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kuykendall L. D. , Roy M. A. , O'Neill J. J. , Devine T. E. . ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum . . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  21. Ludwig W. , Rossello-Mora R. , Aznar R. , Klugbauer S. , Spring S. , Teetz K. , Beimfohr C. , Brockmann E. , Kirchhof G. et al. & other authors ( 1995; ). Comparative sequence analysis of 23S rRNA from Proteobacteria. . Syst Appl Microbiol 18:, 164–188.[CrossRef]
    [Google Scholar]
  22. Miller L. T. . ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  23. Mizoguchi T. , Sato T. , Okabe T. . ( 1976; ). New sulfur-oxidizing bacteria capable of growing heterotrophically, Thiobacillus rubellus nov. sp. and Thiobacillus delicatus nov. sp.. J Ferment Technol 54:, 181–191.
    [Google Scholar]
  24. Moreira D. , Amils R. . ( 1996; ). PCR-mediated detection of the chemolithotrophic bacterium Thiobacillus cuprinus using 23S rDNA- and 16S/23S intergenic spacer region-targeted oligonucleotide primers. . FEMS Microbiol Lett 142:, 289–293. [CrossRef] [PubMed]
    [Google Scholar]
  25. Moreira D. , Amils R. . ( 1997; ). Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov.. Int J Syst Bacteriol 47:, 522–528. [CrossRef] [PubMed]
    [Google Scholar]
  26. Moreira D. , Amils R. , Marin I. . ( 1994; ). Complete primary structure of the 23S rRNA coding gene from Thiobacillus cuprinus and its similarity with that of Burkholderia cepacia . . Syst Appl Microbiol 17:, 481–483.[CrossRef]
    [Google Scholar]
  27. Reasoner D. J. , Blannon J. C. , Geldreich E. E. . ( 1979; ). Rapid seven-hour fecal coliform test. . Appl Environ Microbiol 38:, 229–236.[PubMed]
    [Google Scholar]
  28. Walcott R. R. , Langston D. B. Jr , Sanders F. H. Jr , Gitaitis R. D. . ( 2000; ). Investigating intraspecific variation of Acidovorax avenae subsp. citrulli using DNA fingerprinting and whole cell fatty acid analysis. . Phytopathology 90:, 191–196. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023408-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023408-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error