1887

Abstract

Many studies on subsp. () have been carried out using strain ATCC 393 (pLZ15). Four strains of ATCC 393 and three of ATCC 393 (pLZ15) were compared using phenotypic methods and many of the available genotyping techniques. These tests showed that strains of ATCC 393 obtained from independent public type-culture collections were significantly different from the plasmid-free (pLZ15) strains of ATCC 393. These findings were confirmed by sequencing the first 580 nt (domain I) of the 16S and 23S rDNAs of the strains. Complete sequencing of the 16S rDNA of one representative strain from each group revealed that strain ATCC 393 from culture collections was 99 % similar to ATCC 15820 and that the strain so far considered as ATCC 393 (pLZ15) was, in turn, 100 % similar to ATCC 334 and subsp. ATCC 4022. All data obtained in this work indicate that the ancestral strain of ATCC 393 (pLZ15) might never have been the strain that is now available from culture collections.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02325-0
2003-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530067.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02325-0&mimeType=html&fmt=ahah

References

  1. Alvarez, M. A., Rodriguez, A. & Suarez, J. E. ( 1999; ). Stable expression of the Lactobacillus casei bacteriophage A2 repressor blocks phage propagation during milk fermentation. J Appl Microbiol 86, 812–816.[CrossRef]
    [Google Scholar]
  2. Anderson, D. G. & McKay, L. L. ( 1983; ). Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46, 549–552.
    [Google Scholar]
  3. Billot-Klein, D., Legrand, R., Schoot, B., van Heinjenoort, J. & Gutmann, L. ( 1997; ). Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J Bacteriol 179, 6208–6212.
    [Google Scholar]
  4. Bourget, N., Simonet, J. M. & Decaris, B. ( 1993; ). Analysis of the genome of the five Bifidobacterium breve strains: plasmid content, pulsed-field gel electrophoresis genome size estimation and rrn loci number. FEMS Microbiol Lett 110, 11–20.[CrossRef]
    [Google Scholar]
  5. Chaillou, S., Pouwels, P. H. & Postma, P. W. ( 1999; ). Transport of d-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate : mannose phosphotransferase system. J Bacteriol 181, 4768–4773.
    [Google Scholar]
  6. Chassy, B. M. ( 1976; ). A gentle method for the lysis of oral streptococci. Biochem Biophys Res Commun 68, 603–608.[CrossRef]
    [Google Scholar]
  7. Chassy, B. M. & Alpert, C. A. ( 1989; ). Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol Rev 63, 157–166.
    [Google Scholar]
  8. Chassy, B. M. & Flickinger, J. L. ( 1987; ). Transformation of Lactobacillus casei by electroporation. FEMS Microbiol Lett 44, 173–177.[CrossRef]
    [Google Scholar]
  9. Chassy, B. M. & Giuffrida, A. ( 1980; ). Method for the lysis of Gram-positive, asporogenous bacteria with lysozyme. Appl Environ Microbiol 39, 153–158.
    [Google Scholar]
  10. Chassy, B. M., Gibson, E. & Giuffrida, A. ( 1976; ). Evidence for extrachromosomal elements in Lactobacillus. J Bacteriol 127, 1576–1578.
    [Google Scholar]
  11. Chen, H., Lim, C. K., Lee, Y. K. & Chan, Y. N. ( 2000; ). Comparative analysis of the genes encoding 23S–5S rRNA intergenic spacer regions of Lactobacillus casei-related strains. Int J Syst Evol Microbiol 50, 471–478.[CrossRef]
    [Google Scholar]
  12. Clark, A. G. & Lanigan, C. M. S. ( 1993; ). Prospects for estimating nucleotide divergence with RAPDs. Mol Biol Evol 10, 1096–1111.
    [Google Scholar]
  13. Collins, M. D., Phillips, B. A. & Zanoni, P. ( 1989; ). Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int J Syst Bacteriol 39, 105–108.[CrossRef]
    [Google Scholar]
  14. Coullon, S., Chemardin, P., Gueguen, Y., Arnaud, A. & Glazy, P. ( 1998; ). Purification and characterization of an intracellular β-glucosidase from Lactobacillus casei ATCC 393. Appl Biochem Biotechnol 74, 104–114.
    [Google Scholar]
  15. Dellaglio, F., Bottazzi, V. & Vescovo, M. ( 1975; ). Deoxyribonucleic acid homology among Lactobacillus species of the subgenus Streptobacterium Orla-Jensen. Int J Syst Bacteriol 25, 160–172.[CrossRef]
    [Google Scholar]
  16. Dellaglio, F., Dicks, L. M. T., Du Toit, M. & Torriani, S. ( 1991; ). Designation of ATCC 334 in place of ATCC 393 (NCDO 161) as the neotype strain of Lactobacillus casei subsp. casei and rejection of the name Lactobacillus paracasei (Collins et al., 1981). Request for an opinion. Int J Syst Bacteriol 41, 340–342.[CrossRef]
    [Google Scholar]
  17. Dicks, L. M. T., Du Pleiss, E. M., Dellaglio, F. & Lauer, E. ( 1996; ). Reclassification of Lactobacillus casei subsp. casei ATCC 393 and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae nom. rev., designation of ATCC 334 as the neotype of L. casei subsp. casei, and rejection of the name Lactobacillus paracasei. Int J Syst Bacteriol 46, 337–340.[CrossRef]
    [Google Scholar]
  18. Dossonnet, V., Monedero, V., Zagorec, M., Galinier, A., Pérez-Martínez, G. & Deutscher, J. ( 2000; ). Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion. J Bacteriol 182, 2582–2590.[CrossRef]
    [Google Scholar]
  19. Felis, G. E., Dellaglio, F., Mizzi, L. & Torriani, S. ( 2001; ). Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int J Syst Evol Microbiol 51, 2113–2117.[CrossRef]
    [Google Scholar]
  20. Ferrero, M., Cesena, C., Morelli, L., Scolari, G. & Vescovo, M. ( 1996; ). Molecular characterization of Lactobacillus casei strains. FEMS Microbiology Lett 140, 215–219.[CrossRef]
    [Google Scholar]
  21. Flickinger, J. L., Porter, E. V. & Chassy, B. M. ( 1986; ). Molecular cloning of a plasmid-encoded β-galactosidase from Lactobacillus casei. In Abstracts of the 86th General Meeting of the American Society of Microbiology 1986, abstract H-179, p. 156. Washington, DC: American Society for Microbiology.
  22. Gordon, G. L. & Doelle, H. W. ( 1976; ). Purification, properties and immunological relationship of l(+)-lactate dehydrogenase from Lactobacillus casei. Eur J Biochem 67, 543–555.[CrossRef]
    [Google Scholar]
  23. Gosalbes, M. J., Monedero, V., Alpert, C.-A. & Pérez-Martínez, G. ( 1997; ). Establishing a model to study the regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148, 83–89.[CrossRef]
    [Google Scholar]
  24. Gosalbes, M. J., Monedero, V. & Pérez-Martínez, G. ( 1999; ). Elements involved in catabolite repression and induction of the lactose operon in Lactobacillus casei. J Bacteriol 181, 3928–3934.
    [Google Scholar]
  25. Gosalbes, M. J., Esteban, C. D., Galán, J. L. & Pérez-Martínez, G. ( 2000; ). Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66, 4822–4828.[CrossRef]
    [Google Scholar]
  26. Gosalbes, M. J., Pérez-Arellano, I., Esteban, C. D., Galán, J. L. & Pérez-Martínez, G. ( 2001; ). Use of lac regulatory elements for gene expression in Lactobacillus casei. Lait 81, 29–35.[CrossRef]
    [Google Scholar]
  27. Heath, J. D., Perkins, J. D., Sharma, B. & Weinstock, G. M. ( 1992; ). NotI genomic cleavage map of Escherichia coli K-12 strain MG1655. J Bacteriol 174, 558–567.
    [Google Scholar]
  28. Hegazi, F. Z. & Abo-Elanga, I. G. ( 1987; ). Proteolytic activity of crude cell-free extract of Lactobacillus casei and Lactobacillus plantarum. Nahrung 31, 225–232.[CrossRef]
    [Google Scholar]
  29. Hemme, D., Gaier, W., Winters, D. A., Foucaud, C. & Vogel, R. F. ( 1994; ). Expression of Lactobacillus casei ATCC 393 β-galactosidase encoded by plasmid pLZ15 in Lactococcus lactis CNRZ 1123. Lett Appl Microbiol 19, 345–348.[CrossRef]
    [Google Scholar]
  30. Hensel, R., Mayr, U., Stetter, K. O. & Kandler, O. ( 1977; ). Comparative studies of lactic acid dehydrogenases in lactic acid bacteria. I. Purification and kinetics of the allosteric l-lactic acid dehydrogenase from Lactobacillus casei ssp. casei and Lactobacillus curvatus. Arch Microbiol 112, 81–93.[CrossRef]
    [Google Scholar]
  31. Hols, P., Slos, P., Dutot, P., Reymund, J., Chabot, P., Delplace, B., Delcour, J. & Mercenier, A. ( 1997; ). Efficient secretion of the model antigen M6-gp41E in Lactobacillus plantarum NCIMB 8826. Microbiology 143, 2733–2741.[CrossRef]
    [Google Scholar]
  32. Kim, S. F., Baek, S. J. & Pack, M. Y. ( 1991; ). Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene. Appl Environ Microbiol 57, 2413–2417.
    [Google Scholar]
  33. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, chapter 6, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  34. Leer, R. J., van Luijk, N., Posno, M. & Pouwels, P. H. ( 1992; ). Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol Gen Genet 234, 265–274.[CrossRef]
    [Google Scholar]
  35. Lee-Wickner, L. J. & Chassy, B. M. ( 1984; ). Production and regeneration of Lactobacillus casei protoplasts. Appl Environ Microbiol 48, 994–1000.
    [Google Scholar]
  36. Lee-Wickner, L. J. & Chassy, B. M. ( 1985; ). Characterization and molecular cloning for cryptic plasmids isolated from Lactobacillus casei. Appl Environ Microbiol 49, 1154–1161.
    [Google Scholar]
  37. Liu, S.-L., Hessel, A. & Sanderson, K. E. ( 1993; ). Genomic mapping with I-CeuI, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci U S A 90, 6874–6878.[CrossRef]
    [Google Scholar]
  38. Maassen, C. B. M., Laman, J. D. & den Bak-Glashouwer, M. J. ( 1999; ). Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine 17, 2117–2128.[CrossRef]
    [Google Scholar]
  39. Marshall, P. & Lemieux, C. ( 1992; ). The I-CeuI endonuclease recognizes a sequence of 19 base pairs and preferentially cleaves the coding strand of the Chlamydomonas moewusii chloroplast large subunit rRNA gene. Nucleic Acids Res 20, 6401–6407.[CrossRef]
    [Google Scholar]
  40. Mills, C. K. & Lessel, E. F. ( 1973; ). Lactobacterium zeae Kuznestov, a later subjective synonym of Lactobacillus casei (Orla-Jensen) Hansen and Lessel. Int J Syst Bacteriol 23, 430–432.[CrossRef]
    [Google Scholar]
  41. Monedero, V., Gosalbes, M. J. & Pérez-Martínez, G. ( 1997; ). Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179, 6657–6664.
    [Google Scholar]
  42. Mori, K., Yamazaki, K., Ishiyama, T., Katsumata, M., Kobayashi, K., Kawai, Y., Inoue, N. & Shinano, H. ( 1997; ). Comparative sequence analyses of the gene coding for 16S rRNA of Lactobacillus casei-related taxa. Int J Syst Bacteriol 47, 54–57.[CrossRef]
    [Google Scholar]
  43. Moschetti, G., Blaiotta, G., Aponte, M., Mauriello, G., Villani, F. & Coppola, S. ( 1997; ). Genotyping of Lactobacillus delbrueckii subsp. bulgaricus and determination of the number and forms of rrn operons in L. delbrueckii and its subspecies. Res Microbiol 148, 501–510.[CrossRef]
    [Google Scholar]
  44. Murray, R. G. E., Doetsch, R. N. & Robinow, C. F. ( 1994; ). Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  45. Nour, M. ( 1998; ). 16S–23S and 23S–5S intergenic spacer regions of lactobacilli: nucleotide sequence, secondary structure and comparative analysis. Res Microbiol 149, 433–448.[CrossRef]
    [Google Scholar]
  46. Palles, T., Beresford, T., Condon, S. & Cogan, T. M. ( 1998; ). Citrate metabolism in Lactobacillus casei and Lactobacillus plantarum. J Appl Microbiol 85, 147–154.[CrossRef]
    [Google Scholar]
  47. Pelletier, C., Bouley, C., Cayuela, C., Bouttier, S., Bourlioux, P. & Bellon-Fontaine, M.-N. ( 1997; ). Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63, 1725–1731.
    [Google Scholar]
  48. Pérez-Arellano, I., Zúñiga, M. & Pérez-Martínez, G. ( 2001; ). Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid 46, 106–116.[CrossRef]
    [Google Scholar]
  49. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  50. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  51. Sechi, L. A. & Daneo-Moore, L. ( 1993; ). Characterization of intergenic spacers in two rrn operons of Enterococcus hirae ATCC 9790. J Bacteriol 175, 3213–3219.
    [Google Scholar]
  52. Stingele, F., Neeser, J.-R. & Mollet, B. ( 1996; ). Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178, 1680–1690.
    [Google Scholar]
  53. Tenreiro, R., Santos, M. A., Paveia, H. & Vieira, G. ( 1994; ). Inter-strain relationships among wine leuconostocs and their divergence from other Leuconostoc species, as revealed by low frequency restriction fragment analysis of genomic DNA. J Appl Bacteriol 77, 271–280.[CrossRef]
    [Google Scholar]
  54. Veyrat, A., Monedero, V. & Pérez-Martínez, G. ( 1994; ). Glucose transport by the phosphoenolpyruvate : mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiology 140, 1141–1149.[CrossRef]
    [Google Scholar]
  55. Veyrat, A., Miralles, M. C. & Pérez-Martínez, G. ( 1999; ). A fast method for monitoring the colonization rate of lactobacilli in a meat model system. J Appl Microbiol 87, 49–61.[CrossRef]
    [Google Scholar]
  56. Viana, R., Monedero, V., Dossonnet, V., Pérez-Martínez, G. & Deutscher, J. ( 2000; ). Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, catabolite repression and inducer exclusion. Mol Microbiol 36, 570–584.
    [Google Scholar]
  57. Wayne, L. G. ( 1994; ). Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on Requests for Opinions published between January 1985 and July 1993. Int J Syst Bacteriol 44, 177–178.[CrossRef]
    [Google Scholar]
  58. Welsh, J. & McClelland, M. ( 1990; ). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18, 7213–7218.[CrossRef]
    [Google Scholar]
  59. Yebra, M. J., Veyrat, A., Santos, M. A. & Pérez-Martínez, G. ( 2000; ). Genetics of l-sorbose transport and metabolism in Lactobacillus casei. J Bacteriol 182, 155–163.[CrossRef]
    [Google Scholar]
  60. Zhong, W., Millsap, K., Bialkowska-Hobrzanska, H. & Reid, G. ( 1998; ). Differentiation of Lactobacillus species by molecular typing. Appl Environ Microbiol 64, 2418–2423.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02325-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02325-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error