1887

Abstract

Mesophilic, hydrogenotrophic, sulfate-reducing bacteria were isolated from a deep-sea hydrothermal chimney sample collected at 13° N on the East-Pacific Rise at a depth of 2600 m. Two strains (BL5 and H9) were found to be phylogenetically similar to (similarity >99 %), whereas two other strains (H1 and AM13) were found to be phylogenetically distinct (similarity 96·4 %) from , their closest relative. Strain AM13 was characterized further. It was a barophilic, Gram-negative, non-sporulating, motile, vibrio-shaped or sigmoid bacterium possessing desulfoviridin. It grew at temperatures ranging from 20 to 40 °C, with an optimum at 35 °C in the presence of 2·5 % NaCl. The pH range for growth was 6·7–8·2 with an optimum around 7·8. Strain AM13 utilized H/CO, lactate, formate, ethanol, choline and glycerol as electron donors. Electron acceptors were sulfate, sulfite and thiosulfate, but not elemental sulfur or nitrate. The G+C content of DNA was 47 mol%. Strain AM13 (=DSM 14728 =CIP107303) differed from not only phylogenetically, but also genomically (DNA–DNA reassociation value between the two bacteria was 23·8 %) and phenotypically. This isolate is therefore proposed as the type strain of a novel species of the genus , sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02323-0
2003-01-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530173.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02323-0&mimeType=html&fmt=ahah

References

  1. Andrews, K. T. & Patel, B. K. C. ( 1996; ). Fervidobacterium gondwanense sp. nov, a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265–269.[CrossRef]
    [Google Scholar]
  2. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  3. Bale, S. J., Goodman, K., Rochelle, P. A., Marchesi, J. R., Fry, J. C., Weightman, A. J. & Parkes, R. J. ( 1997; ). Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47, 515–521.[CrossRef]
    [Google Scholar]
  4. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  5. Burggraf, S., Jannasch, H. W., Nicolaus, B. & Stetter, K. O. ( 1990; ). Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing Archaebacteria. Syst Appl Microbiol 13, 24–28.[CrossRef]
    [Google Scholar]
  6. Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W., III & Cary, S. C. ( 2001; ). Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67, 4566–4572.[CrossRef]
    [Google Scholar]
  7. Chamkha, M., Patel, B. K. C., Garcia, J.-L. & Labat, M. ( 2001; ). Isolation of Clostridium bifermentans from oil mill wastewaters converting cinnamic acid to 3-phenylpropionic acid and emendation of the species. Anaerobe 7, 189–197.[CrossRef]
    [Google Scholar]
  8. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  9. Durand, P., Reysenbach, A. L., Prieur, D. & Pace, N. ( 1993; ). Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159, 39–44.[CrossRef]
    [Google Scholar]
  10. Elsgaard, L., Isaksen, M. F., Jorgensen, B. B., Alayse, A. M. & Jannasch, H. W. ( 1994; ). Microbial sulfate reduction in deep-sea sediments at Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58, 3335–3343.[CrossRef]
    [Google Scholar]
  11. Elsgaard, L., Guezennec, J., Benbouzid-Rollet, N. & Prieur, D. ( 1995; ). Mesophilic sulfate-reducing bacteria from three deep-sea hydrothermal vent sites. Oceanol Acta 18, 95–104.
    [Google Scholar]
  12. Fardeau, M.-L., Cayol, J.-L., Magot, M. & Ollivier, B. ( 1993; ). H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 13, 327–332.
    [Google Scholar]
  13. Fardeau, M.-L., Ollivier, B., Patel, B. K. C., Magot, M., Thomas, P., Rimbault, A., Rocchiccioli, F. & Garcia, J.-L. ( 1997; ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47, 1013–1019.[CrossRef]
    [Google Scholar]
  14. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  15. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  16. Hernandez-Eugenio, G., Fardeau, M.-L., Patel, B. K. C., Macarie, H., Garcia, J.-L. & Ollivier, B. ( 2000; ). Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6, 305–312.[CrossRef]
    [Google Scholar]
  17. Hungate, R. E. ( 1969; ). A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  18. Jannasch, H. W., Wirsen, C. O., Nelson, D. C. & Robertson, L. A. ( 1985; ). Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35, 422–424.[CrossRef]
    [Google Scholar]
  19. Jeanthon, C. ( 2000; ). Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77, 117–133.[CrossRef]
    [Google Scholar]
  20. Jørgensen, B., Isaksen, M. F. & Jannasch, H. W. ( 1992; ). Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258, 1756–1757.[CrossRef]
    [Google Scholar]
  21. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  22. Karl, D. M. ( 1995; ). Ecology of free-hydrothermal vent microbial communities. In The Microbiology of Deep-Sea Hydrothermal Vents, pp. 35–124. Edited by D. M. Karl. Boca Raton, FL: CRC Press.
  23. Madsen, T. & Aamand, J. ( 1991; ). Effect of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol 57, 2453–2458.
    [Google Scholar]
  24. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 9 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  25. Nielsen, J. T., Liesack, W. & Finster, K. ( 1999; ). Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Bacteriol 49, 859–865.[CrossRef]
    [Google Scholar]
  26. Polz, M. F. & Cavanaugh, C. M. ( 1995; ). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92, 7232–7236.[CrossRef]
    [Google Scholar]
  27. Postgate, J. R. ( 1959; ). A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183, 481–482.
    [Google Scholar]
  28. Prieur, D. & Jeanthon, C. ( 1987; ). Preliminary study of heterotrophic bacteria isolated from two deep-sea hydrothermal invertebrates: Alvinella pompejana (polychaete) and Bathymodiolus thermophilus (bivalve). Symbiosis 4, 97–98.
    [Google Scholar]
  29. Prieur, D., Chamroux, S., Durand, P., Erauso, G., Fera, P., Jeanthon, C., Le Borgne, L., Mével, G. & Vincent, P. ( 1990; ). Metabolic diversity in epibiotic microflora associated with the Pompeii worms Alvinella pompejana and A. caudata (Polychaete: Annelida) from deep-sea hydrothermal vents. Mar Biol 106, 361–367.[CrossRef]
    [Google Scholar]
  30. Raguénès, G., Pignet, P., Gauthier, G., Peres, A., Christen, R., Rougeaux, H., Barbier, G. & Guezennec, J. ( 1996; ). Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62, 67–73.
    [Google Scholar]
  31. Ruby, E. G. & Jannasch, H. W. ( 1982; ). Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149, 161–165.
    [Google Scholar]
  32. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  33. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  34. Wirsen, C. O., Brinkhoff, T., Kuever, J., Muyzer, G., Molyneaux, S. & Jannasch, H. W. ( 1998; ). Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64, 4057–4059.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02323-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02323-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error