1887

Abstract

Mesophilic, hydrogenotrophic, sulfate-reducing bacteria were isolated from a deep-sea hydrothermal chimney sample collected at 13° N on the East-Pacific Rise at a depth of 2600 m. Two strains (BL5 and H9) were found to be phylogenetically similar to (similarity >99 %), whereas two other strains (H1 and AM13) were found to be phylogenetically distinct (similarity 96·4 %) from , their closest relative. Strain AM13 was characterized further. It was a barophilic, Gram-negative, non-sporulating, motile, vibrio-shaped or sigmoid bacterium possessing desulfoviridin. It grew at temperatures ranging from 20 to 40 °C, with an optimum at 35 °C in the presence of 2·5 % NaCl. The pH range for growth was 6·7–8·2 with an optimum around 7·8. Strain AM13 utilized H/CO, lactate, formate, ethanol, choline and glycerol as electron donors. Electron acceptors were sulfate, sulfite and thiosulfate, but not elemental sulfur or nitrate. The G+C content of DNA was 47 mol%. Strain AM13 (=DSM 14728 =CIP107303) differed from not only phylogenetically, but also genomically (DNA–DNA reassociation value between the two bacteria was 23·8 %) and phenotypically. This isolate is therefore proposed as the type strain of a novel species of the genus , sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02323-0
2003-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530173.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02323-0&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov, a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J. 1997; Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521 [CrossRef]
    [Google Scholar]
  4. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  5. Burggraf S., Jannasch H. W., Nicolaus B., Stetter K. O. 1990; Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing Archaebacteria . Syst Appl Microbiol 13:24–28 [CrossRef]
    [Google Scholar]
  6. Campbell B. J., Jeanthon C., Kostka J. E., Luther G. W. III, Cary S. C. 2001; Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572 [CrossRef]
    [Google Scholar]
  7. Chamkha M., Patel B. K. C., Garcia J.-L., Labat M. 2001; Isolation of Clostridium bifermentans from oil mill wastewaters converting cinnamic acid to 3-phenylpropionic acid and emendation of the species. Anaerobe 7:189–197 [CrossRef]
    [Google Scholar]
  8. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  9. Durand P., Reysenbach A. L., Prieur D., Pace N. 1993; Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159:39–44 [CrossRef]
    [Google Scholar]
  10. Elsgaard L., Isaksen M. F., Jorgensen B. B., Alayse A. M., Jannasch H. W. 1994; Microbial sulfate reduction in deep-sea sediments at Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343 [CrossRef]
    [Google Scholar]
  11. Elsgaard L., Guezennec J., Benbouzid-Rollet N., Prieur D. 1995; Mesophilic sulfate-reducing bacteria from three deep-sea hydrothermal vent sites. Oceanol Acta 18:95–104
    [Google Scholar]
  12. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 13:327–332
    [Google Scholar]
  13. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Hernandez-Eugenio G., Fardeau M.-L., Patel B. K. C., Macarie H., Garcia J.-L., Ollivier B. 2000; Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312 [CrossRef]
    [Google Scholar]
  17. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  18. Jannasch H. W., Wirsen C. O., Nelson D. C., Robertson L. A. 1985; Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35:422–424 [CrossRef]
    [Google Scholar]
  19. Jeanthon C. 2000; Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77:117–133 [CrossRef]
    [Google Scholar]
  20. Jørgensen B., Isaksen M. F., Jannasch H. W. 1992; Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258:1756–1757 [CrossRef]
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  22. Karl D. M. 1995; Ecology of free-hydrothermal vent microbial communities. In The Microbiology of Deep-Sea Hydrothermal Vents pp 35–124Edited by Karl D. M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  23. Madsen T., Aamand J. 1991; Effect of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol 57:2453–2458
    [Google Scholar]
  24. Maidak B. L., Cole J. R., Lilburn T. G.9 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  25. Nielsen J. T., Liesack W., Finster K. 1999; Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina . Int J Syst Bacteriol 49:859–865 [CrossRef]
    [Google Scholar]
  26. Polz M. F., Cavanaugh C. M. 1995; Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92:7232–7236 [CrossRef]
    [Google Scholar]
  27. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans . Nature 183:481–482
    [Google Scholar]
  28. Prieur D., Jeanthon C. 1987; Preliminary study of heterotrophic bacteria isolated from two deep-sea hydrothermal invertebrates: Alvinella pompejana (polychaete) and Bathymodiolus thermophilus (bivalve). Symbiosis 4:97–98
    [Google Scholar]
  29. Prieur D., Chamroux S., Durand P., Erauso G., Fera P., Jeanthon C., Le Borgne L., Mével G., Vincent P. 1990; Metabolic diversity in epibiotic microflora associated with the Pompeii worms Alvinella pompejana and A. caudata (Polychaete: Annelida) from deep-sea hydrothermal vents. Mar Biol 106:361–367 [CrossRef]
    [Google Scholar]
  30. Raguénès G., Pignet P., Gauthier G., Peres A., Christen R., Rougeaux H., Barbier G., Guezennec J. 1996; Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis , and preliminary characterization of the polymer. Appl Environ Microbiol 62:67–73
    [Google Scholar]
  31. Ruby E. G., Jannasch H. W. 1982; Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Wirsen C. O., Brinkhoff T., Kuever J., Muyzer G., Molyneaux S., Jannasch H. W. 1998; Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64:4057–4059
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02323-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02323-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error