1887

Abstract

A Gram-positive-staining, aerobic, non-motile, coccoid shaped, halotolerant bacterium (strain JG 06) was isolated from the roots of , an extreme halophyte. Phylogenetic analysis based on 16S rRNA gene sequence showed that the novel strain had sequence similarities of 99.2 % to JCM 11608, 99.0 % to DSM 10241 and 98.2 % to DSM 4810. DNA–DNA hybridization with DSM 46341, DSM 10241, DSM 4810, DSM 10673, DSM 10672, DSM 14564, DSM 14566 and DSM 15460 resulted in reassociation values of 36.2 %, 36.5 %, 35.8 %, 27.6 %, 27.9 %, 28.2 %, 28.7 % and 11.2 %, respectively. The peptidoglycan type of strain JG 06 was variant A4γ. The menaquinone content was MK7 (100 %). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, monogalactosyl diglyceride, three unidentified phospholipids and three glycolipids. The predominant fatty acid was anteiso-C (52.07 %); significant amounts of iso-C(12.38 %), iso-C(8.59 %) and anteiso-C(10.03 %) were also present. The G+C content of the DNA was 73.0 mol%. The strain formed a growth pellicle in nitrogen-free semisolid NFb medium containing NaCl at levels of up to 4 % (w/v) and reduced acetylene to ethylene, a result indicative of N fixation. In nutrient broth medium the novel strain grew at NaCl concentrations up to 15 % (w/v). It also had the ability to produce indole-3-acetic acid (IAA) and siderophores, utilized 1-aminocyclopropane-1-carboxylate (ACC) as a sole source of nitrogen and possessed the ACC deaminase enzyme. On the basis of physiological, biochemical data and phylogenetic analyses, strain JG 06 should be placed in the genus . Strain JG 06 represents a novel species of the genus for which the name sp. nov. is proposed (type strain JG 06 = DSM 23186 = IMCC 252).

Funding
This study was supported by the:
  • , CSIR , (Award NWP-18)
  • , GSBTM
  • , DST
  • , Govt. of Gujarat
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023176-0
2011-12-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/12/2799.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023176-0&mimeType=html&fmt=ahah

References

  1. Buczolits S., Schumann P., Weidler G., Radax C., Busse H. J. 2003; Brachybacterium muris sp. nov., isolated from the liver of a laboratory mouse strain. Int J Syst Evol Microbiol 53:1955–1960 [CrossRef][PubMed]
    [Google Scholar]
  2. Caballero-Mellado J., Fuentes-Ramirez L. E., Reis V. M., Martínez-Romero E. 1995; Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008–3013[PubMed]
    [Google Scholar]
  3. Chou J.-H., Lin K.-Y., Lin M.-C., Sheu S.-Y., Wei Y.-H., Arun A. B., Young C.-C., Chen W.-M. 2007; Brachybacterium phenoliresistens sp. nov., isolated from oil-contaminated coastal sand. Int J Syst Evol Microbiol 57:2674–2679 [CrossRef][PubMed]
    [Google Scholar]
  4. Christie W. W. 2003; Isolation, separation, identification and structural analysis of lipids. In Lipid Analysis pp. 105–180 Bridgwater, UK: Oily Press;
    [Google Scholar]
  5. Collee J. G., Miles R. S., Watt B. 1996; Tests for identification of bacteria. In Mackie and McCartney Practical Medical Microbiology, 14th edn. pp. 131–149 Edited by Collee J. G., Fraser A. G., Marmion B. P., Simmons A. New York: Churchill Livingstone;
    [Google Scholar]
  6. Collins M., Brown J., Jones D. 1988; Brachybacterium faecium gen. nov., sp. nov., a coryneform bacterium from poultry deep litter. Int J Syst Bacteriol 38:45–48 [CrossRef]
    [Google Scholar]
  7. Döbereiner J. 1995; Isolation and identification of aerobic nitrogen-fixing bacteria from soil and plants. In Methods in Applied Soil Microbiology and Biochemistry pp. 134–141 Edited by Alef K., Nannipieri P. London: Academic Press;
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenesis: An approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Goldstein A. H. 1986; Bacterial solubilization of mineral phosphates: Historical perspectives and future prospects. Am J Altern Agric 1:51–57
    [Google Scholar]
  10. Gordon S. A., Weber R. P. 1951; Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195 [CrossRef][PubMed]
    [Google Scholar]
  11. Gvozdyak O. R., Nogina T. M., Schumann P. 1992; Taxonomic study of the genus Brachybacterium: Brachybacterium nesterenkovii sp. nov.. Int J Syst Bacteriol 42:74–78 [CrossRef][PubMed]
    [Google Scholar]
  12. Heyrman J., Balcaen A., De Vos P., Schumann P., Swings J. 2002; Brachybacterium fresconis sp. nov. and Brachybacterium sacelli sp. nov., isolated from deteriorated parts of a medieval wall painting of the chapel of Castle Herberstein (Austria). Int J Syst Evol Microbiol 52:1641–1646 [CrossRef][PubMed]
    [Google Scholar]
  13. Kirchhof G., Eckert B., Stoffels M., Baldani J. I., Reis V. M., Hartmann A. 2001; Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168[PubMed]
    [Google Scholar]
  14. Mateos P. F., Jimenez-Zurdo J. I., Chen J., Squartini A. S., Haack S. K., Martinez-Molina E., Hubbell D. H., Dazzo F. B. 1992; Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii . Appl Environ Microbiol 58:1816–1822[PubMed]
    [Google Scholar]
  15. Näther D. J., Rachel R., Wanner G., Wirth R. 2006; Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts. J Bacteriol 188:6915–6923 [CrossRef][PubMed]
    [Google Scholar]
  16. Penrose D. M., Glick B. R. 2003; Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  18. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [CrossRef][PubMed]
    [Google Scholar]
  19. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  20. Schubert K., Ludwig W., Springer N., Kroppenstedt R. M., Accolas J.-P., Fiedler F. 1996; Two coryneform bacteria isolated from the surface of French Gruyère and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov.. Int J Syst Bacteriol 46:81–87 [CrossRef][PubMed]
    [Google Scholar]
  21. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef][PubMed]
    [Google Scholar]
  22. Sierra G. A. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22 [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  25. Takeuchi M., Fang C.-X., Yokota A. 1995; Taxonomic study of the genus Brachybacterium: Proposal of Brachybacterium conglomeratum sp. nov., nom. rev., Brachybacterium paraconglomeratum sp. nov., and Brachybacterium rhamnosum sp. nov.. Int J Syst Bacteriol 45:160–168 [CrossRef]
    [Google Scholar]
  26. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  28. Valdés M., Pérez N. O., Estrada-de Los Santos P., Caballero-Mellado J., Peña-Cabriales J. J., Normand P., Hirsch A. M. 2005; Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466 [CrossRef][PubMed]
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  30. Whittaker P., Fry F. S., Curtis S. K., Al-Khaldi S. F., Mossoba M. M., Yurawecz M. P., Dunkel V. C. 2005; Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J Agric Food Chem 53:3735–3742 [CrossRef][PubMed]
    [Google Scholar]
  31. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355[PubMed]
    [Google Scholar]
  32. Zhang G., Zeng G., Cai X., Deng S., Luo H., Sun G. 2007; Brachybacterium zhongshanense sp. nov., a cellulose-decomposing bacterium from sediment along the Qijiang River, Zhongshan City, China. Int J Syst Evol Microbiol 57:2519–2524 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023176-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023176-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error