1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (SV325) was isolated from the sediment of a hypersaline lake located 4600 m above sea level (Laguna Vilama, Argentina). Strain SV325 formed cream to pink colonies, was motile and moderately halophilic, and tolerated NaCl concentrations of 1–25 % (w/v) with an optimum of 5–10 % (w/v). Growth occurred at 5–40 °C (optimum around 30 °C) and at pH 5.0–10.0 (optimum 7.0–8.0). The bacterium did not produce exopolysaccharides and stained positively for intracellular polyphosphate granules but not for poly-β-hydroxyalkanoates. It produced catalase and oxidase, reduced nitrate to nitrite, hydrolysed gelatin, did not produce acids from sugars and utilized a limited range of substrates as carbon and energy sources: acetate, caproate, fumarate, -β-hydroxybutyrate, malate, maleate, malonate and succinate. The predominant ubiquinones were Q-9 (92.5 %) and Q-8 (7.5 %), the major fatty acids were C cyclo ω8, C, C cyclo and Cω7/iso-C 2-OH, and the DNA G+C content was 55.0 mol%. Phylogenetic analyses based on the 16S rRNA gene indicated that strain SV325 belongs to the genus in the class . Physiological and biochemical tests allowed phenotypic differentiation of strain SV325 from closely related species with validly published names. We therefore propose a novel species, sp. nov., with type strain SV325 ( = DSM 21020  = LMG 24332).

Funding
This study was supported by the:
  • , Cooperative State Research Education and Extension Service, US Department of Agriculture , (Award ILLU-875-389)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023150-0
2011-05-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1211.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023150-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249[PubMed]
    [Google Scholar]
  2. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Béjar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  3. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1996; Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  4. Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R., Labat M. 2007; Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57:2307–2313 [CrossRef][PubMed]
    [Google Scholar]
  5. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam-Syed-Mohideen A. S., McGarrell D. M., Bandela A. M., Cardenas E., Garrity G. M., Tiedje J. M. 2007; The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:Database issueD169–D172 [CrossRef][PubMed]
    [Google Scholar]
  6. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database issueD141–D145 [CrossRef][PubMed]
    [Google Scholar]
  7. de la Haba R. R., Arahal D. R., Márquez M. C., Ventosa A. 2010; Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 60:737–748 [CrossRef][PubMed]
    [Google Scholar]
  8. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Bauman et al. 1993), Halomonas (Vreeland et al. 1980) and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  9. Dyall-Smith M. 2008; The Halohandbook. Protocols for Haloarchaeal Genetics, version 7.0. http://haloarchaea.com/resources/halohandbook/index.html
  10. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  11. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  12. Guzmán D., Quillaguamán J., Muñoz M., Hatti-Kaul R. 2010; Halomonas andesensis sp. nov., a moderate halophile isolated from the saline lake Laguna Colorada in Bolivia. Int J Syst Evol Microbiol 60:749–753 [CrossRef][PubMed]
    [Google Scholar]
  13. Horikoshi K., Grant W. D. (editors) 1998 Extremophiles: Microbial Life in Extreme Environments New York: Wiley;
    [Google Scholar]
  14. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  15. Kaye J. Z., Márquez M. C., Ventosa A., Baross J. A. 2004; Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim K. K., Jin L., Yang H. C., Lee S.-T. 2007; Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 57:675–681 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef][PubMed]
    [Google Scholar]
  18. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  19. Menes R. J., Muxí L. 2002; Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum . Int J Syst Evol Microbiol 52:157–164[PubMed]
    [Google Scholar]
  20. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  21. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  23. Sánchez-Porro C., Kaur B., Mann H., Ventosa A. 2010; Halomonas titanicae sp. nov., a halophilic bacterium isolated from the RMS Titanic. Int J Syst Evol Microbiol 60:2768–2774 [CrossRef][PubMed]
    [Google Scholar]
  24. Seufferheld M. J., Alvarez H. M., Farias M. E. 2008; Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874 [CrossRef][PubMed]
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  27. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  28. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  29. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. 2007; Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023150-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023150-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error