1887

Abstract

A xylan-degrading bacterium, strain X11-1, was isolated from soil collected in Nan province, Thailand. The strain was characterized based on its phenotypic and genotypic characteristics. Strain X11-1 was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. It contained -diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7, anteiso-C (56.6 %) and C (14.0 %) were the predominant cellular fatty acids and diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol were the major phospholipids. The DNA G+C content was 51.6 mol%. Phylogenetic analysis using 16S rRNA gene sequences showed that strain X11-1 was affiliated to the genus and was closely related to KACC 11505 and CCM 3894, with 96.5 % sequence similarity. Therefore, the strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is X11-1 (=KCTC 13042 =PCU 311 =TISTR 1829).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022269-0
2011-01-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022269-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  2. Ash, C., Priest, F. G. & Collins, M. D. ( 1994; ). Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44, 852–853.[CrossRef]
    [Google Scholar]
  3. Aÿ, J., Goetz, F., Borriss, R. & Heinemann, U. ( 1998; ). Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95, 6613–6618.[CrossRef]
    [Google Scholar]
  4. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge. : Cambridge University Press.
    [Google Scholar]
  5. Berge, O., Guinebretière, M. H., Achouak, W., Normand, P. & Heulin, T. ( 2002; ). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52, 607–616.
    [Google Scholar]
  6. Chou, J. H., Chou, Y. J., Lin, K. Y., Sheu, S. Y., Sheu, D. S., Arun, A. B., Young, C. C. & Chen, W. M. ( 2007; ). Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57, 1346–1350.[CrossRef]
    [Google Scholar]
  7. Daane, L. L., Harjono, I., Barns, S. M., Launen, L. A., Palleroni, N. J. & Häggblom, M. M. ( 2002; ). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52, 131–139.
    [Google Scholar]
  8. Dasman, Kajiyama, S., Kawasaki, H., Yagi, M., Seki, T., Fukusaki, E. & Kobayashi, A. ( 2002; ). Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52, 1669–1674.[CrossRef]
    [Google Scholar]
  9. Euzéby, J. P. ( 2010; ). Genus Paenibacillus. In List of Prokaryotic Names with Standing in Nomenclature. Last full update 16 February 2010. http://www.bacterio.cict.fr/p/paenibacillus.html.
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  12. Hespell, R. B. ( 1996; ). Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32, 291–296.[CrossRef]
    [Google Scholar]
  13. Heyndrickx, M., Vandemeulebroecke, K., Scheldeman, P., Hoste, B., Kersters, K., De Vos, P., Logan, N. A., Aziz, A. M., Ali, N. & Berkeley, R. C. W. ( 1995; ). Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus) validus (Nakamura 1984) Ash et al. 1994: emended description of P. validus. . Int J Syst Bacteriol 45, 661–669.[CrossRef]
    [Google Scholar]
  14. Khianngam, S., Tanasupawat, S., Lee, J.-S., Lee, K. C. & Akaracharanya, A. ( 2009a; ). Paenibacillus siamensis sp. nov., Paenibacillus septentrionalis sp. nov. and Paenibacillus montaniterrae sp. nov., xylanase-producing bacteria from Thai soils. Int J Syst Evol Microbiol 59, 130–134.[CrossRef]
    [Google Scholar]
  15. Khianngam, S., Akaracharanya, A., Tanasupawat, S., Lee, K. C. & Lee, J.-S. ( 2009b; ). Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria from soil. Int J Syst Evol Microbiol 59, 564–568.[CrossRef]
    [Google Scholar]
  16. Kim, D. S., Bae, C. Y., Jeon, J. J., Chun, S. J., Oh, H. W., Hong, S. G., Baek, K. S., Moon, E. Y. & Bae, K. S. ( 2004; ). Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54, 2031–2035.[CrossRef]
    [Google Scholar]
  17. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–203.
    [Google Scholar]
  18. Lee, J. C. & Yoon, K. H. ( 2008; ). Paenibacillus woosongensis sp. nov., a xylanolytic bacterium isolated from forest soil. Int J Syst Evol Microbiol 58, 612–616.[CrossRef]
    [Google Scholar]
  19. Lee, H.-J., Shin, D.-J., Cho, N. C., Kim, H.-O., Shin, S.-Y., Im, S.-Y., Lee, H. B., Chum, S. B. & Bai, S. ( 2000; ). Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22, 387–392.[CrossRef]
    [Google Scholar]
  20. Minnikin, D. E., Patel, P. V., Alshamaony, L. & Goodfellow, M. ( 1977; ). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27, 104–117.[CrossRef]
    [Google Scholar]
  21. Morales, P., Madarro, A., Flors, A., Sendra, J. M. & Pérez-González, J. A. ( 1995; ). Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17, 424–429.[CrossRef]
    [Google Scholar]
  22. Nelson, D. M., Glawe, A. J., Labeda, D. P., Cann, I. K. O. & Mackie, R. I. ( 2009; ). Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 59, 1708–1714.[CrossRef]
    [Google Scholar]
  23. Nielsen, P. & Sørensen, J. ( 1997; ). Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22, 183–192.[CrossRef]
    [Google Scholar]
  24. Park, M. J., Kim, H. B., An, D. S., Yang, H. C., Oh, S. T., Chung, H. J. & Yang, D. C. ( 2007; ). Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 57, 146–150.[CrossRef]
    [Google Scholar]
  25. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2005a; ). Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55, 405–408.[CrossRef]
    [Google Scholar]
  26. Rivas, R., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2005b; ). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55, 743–746.[CrossRef]
    [Google Scholar]
  27. Rivas, R., García-Fraile, P., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2006; ). Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 56, 2777–2781.[CrossRef]
    [Google Scholar]
  28. Roux, V. & Raoult, D. ( 2004; ). Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54, 1049–1054.[CrossRef]
    [Google Scholar]
  29. Ruijssenaars, H. J. & Hartsmans, S. ( 2001; ). Plate screening methods for the detection of polysaccharase producing microorganisms. Appl Microbiol Biotechnol 55, 143–149.[CrossRef]
    [Google Scholar]
  30. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef]
    [Google Scholar]
  31. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  32. Sánchez, M. M., Fritze, D., Blanco, A., Spröer, C., Tindall, B. J., Schumann, P., Kroppenstedt, R. M., Diaz, P. & Pastor, F. I. J. ( 2005; ). Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta. Int J Syst Evol Microbiol 55, 935–939.[CrossRef]
    [Google Scholar]
  33. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  34. Scheldeman, P., Goossens, K., Rodriguez-Diaz, M., Pil, A., Goris, J., Herman, L., De Vos, P., Logan, N. A. & Heyndrickx, M. ( 2004; ). Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54, 885–891.[CrossRef]
    [Google Scholar]
  35. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. ( 1997; ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef]
    [Google Scholar]
  36. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  37. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  38. Tanasupawat, S., Thawai, C., Yukphan, P., Moonmangmee, D., Itoh, T., Adachi, O. & Yamada, Y. ( 2004; ). Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-proteobacteria. J Gen Appl Microbiol 50, 159–167.[CrossRef]
    [Google Scholar]
  39. Teather, R. M. & Wood, P. J. ( 1982; ). Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43, 777–780.
    [Google Scholar]
  40. Ten, L. N., Baek, S.-H., Im, W.-T., Lee, M., Oh, H. W. & Lee, S.-T. ( 2006; ). Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56, 2677–2681.[CrossRef]
    [Google Scholar]
  41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  42. Velázquez, E., de Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R. & Villa, T. G. ( 2004; ). Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54, 59–64.[CrossRef]
    [Google Scholar]
  43. Zamost, B. L., Nielsen, H. K. & Starnes, R. L. ( 1991; ). Thermostable enzymes for industrial applications. J Ind Microbiol 8, 71–82.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022269-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022269-0
Loading

Data & Media loading...

Supplements

Scanning electron micrograph of cells of strain X11-1 grown on C agar for 48 h. Bar, 1 µm.

IMAGE

Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic relationships between strain X11-1 and representatives of all species. [PDF](64 KB)

PDF

Phospholipid profile of strain X11-1 after separation by two-dimensional TLC. DPG, Diphosphatidylglycerol; PME, phosphatidylmonomethylethanolamine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL, unknown phospholipid.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error