1887

Abstract

Two slightly halophilic bacterial strains, C1-52 and YD-9, were isolated from Daban and Aiding salt lakes in Xinjiang, China, respectively. The isolates were Gram-positive, non-endospore-forming, non-motile, facultatively anaerobic cocci. Colonies were pale yellow, and a light pink, diffusible pigment was produced after a few additional days of incubation. The isolates grew optimally with 2–3 % (w/v) NaCl, at pH 7.5 and at 30–35 °C. The peptidoglycan type was -Lys–Gly-Ala(Gly). The menaquinones were MK-7 (83.2 %) and MK-6 (16.8 %). The major fatty acids (>10 %) were anteiso-C and iso-C. The DNA G+C content of strains C1-52 and YD-9 was 41.2 and 41.0 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains C1-52 and YD-9 were closely related to YKJ-115 (98.0 and 97.1 % 16S rRNA gene sequence similarity, respectively), followed by YKJ-101 (97.1 and 96.8 %). Strains C1-52 and YD-9 shared, respectively, 20 and 11 % DNA–DNA relatedness with JCM 11198 and 8 and 13 % with JCM 11199. DNA–DNA relatedness between the isolates was 91 %. On the basis of phenotypic and phylogenetic distinctiveness, strains C1-52 and YD-9 belonged to the same species, which should be placed in the genus as a novel species. The name sp. nov. is proposed, with the type strain C1-52 ( = CGMCC 1.8911  = NBRC 105788).

Funding
This study was supported by the:
  • , Chinese International Science and Technology Cooperation , (Award 2006DFA31060)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.022251-0
2011-07-01
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1720.html?itemId=/content/journal/ijsem/10.1099/ijs.0.022251-0&mimeType=html&fmt=ahah

References

  1. Chen Y.-G., Cui X.-L., Pukall R., Li H.-M., Yang Y.-L., Xu L.-H., Wen M.-L., Peng Q., Jiang C.-L. 2007; Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332[PubMed] [CrossRef]
    [Google Scholar]
  2. Chen Y.-G., Zhang Y.-Q., Shi J.-X., Xiao H.-D., Tang S.-K., Liu Z.-X., Huang K., Cui X.-L., Li W.-J. 2009; Jeotgalicoccus marinus sp. nov., a marine bacterium isolated from a sea urchin. Int J Syst Evol Microbiol 59:1625–1629[PubMed] [CrossRef]
    [Google Scholar]
  3. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142[PubMed] [CrossRef]
    [Google Scholar]
  6. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Dong X.-Z., Cai M.-Y. (editors) 2001; Determination of biochemical properties. In Manual for Systematic Identification of General Bacteria pp. 370–398 Beijing: Science Press;
    [Google Scholar]
  8. Duckworth A. W., Grant W. D., Jones B. E., van Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  9. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  10. Guo X.-Q., Li R., Zheng L.-Q., Lin D.-Q., Sun J.-Q., Li S.-P., Li W.-J., Jiang J.-D. 2010; Jeotgalicoccus huakuii sp. nov., a halotolerant bacterium isolated from seaside soil. Int J Syst Evol Microbiol 60:1307–1310[PubMed] [CrossRef]
    [Google Scholar]
  11. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  12. Hoyles L., Collins M. D., Foster G., Falsen E., Schumann P. 2004; Jeotgalicoccus pinnipedialis sp. nov., from a southern elephant seal (Mirounga leonina). Int J Syst Evol Microbiol 54:745–748[PubMed] [CrossRef]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  15. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163[PubMed] [CrossRef]
    [Google Scholar]
  16. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [CrossRef]
    [Google Scholar]
  17. Larsen P. I., Sydnes L. K., Landfald B., Strøm A. R. 1987; Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol 147:1–7[PubMed] [CrossRef]
    [Google Scholar]
  18. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184[PubMed]
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118[PubMed] [CrossRef]
    [Google Scholar]
  21. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  22. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  23. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882[PubMed] [CrossRef]
    [Google Scholar]
  27. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266[PubMed] [CrossRef]
    [Google Scholar]
  28. Ventosa A., Marquez M. C., Ruiz-Berraquero F., Kocur M. 1990; Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic gram-positive coccus. Syst Appl Microbiol 13:29–33 [CrossRef]
    [Google Scholar]
  29. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of ‘Micrococcus sp.’ strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248[PubMed] [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Xu D., Huang J., Zhang J., Fan Q., Liu D. 1995; A new species of genus HalomonasHalomonas huanghaiensis sp. nov.. Acta Microbiol Sin 35:315–321 (in Chinese)
    [Google Scholar]
  32. Yoon J.-H., Lee K.-C., Weiss N., Kang K. H., Park Y.-H. 2003; Jeotgalicoccus halotolerans gen. nov., sp. nov. and Jeotgalicoccus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 53:595–602[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.022251-0
Loading
/content/journal/ijsem/10.1099/ijs.0.022251-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error