1887

Abstract

Here, we describe a novel bacterium, strain TUD-YJ37, which can accumulate polyhydroxybutyrate (PHB) to more than 85 % (w/w) dry cell weight. The bacterium was isolated from a mixed-culture bioreactor by using a feast–famine regime and its properties were characterized. Phylogenetic analysis based on full 16S rRNA gene sequences revealed that the isolate is a member of the , forming an independent, deep phylogenetic lineage. It is most closely related to members of the genera , and , with sequence similarities below 91 %. Strain TUD-YJ37 was an obligately aerobic, ovoid, Gram-negative bacterium, motile by means of a polar flagellum. It utilized C–C fatty acids as carbon and energy sources. The temperature range for growth was 20–35 °C, with an optimum of 30 °C; the pH range was 6.0–8.0, without a clear optimum. The major respiratory quinone was Q-8. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids, an unidentified aminolipid and another unidentified lipid. The predominant fatty acids in the membrane polar lipids were Cω7, C and Cω7. The G+C content of the genomic DNA was 67.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, the isolate is proposed to represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is TUD-YJ37 ( = DSM 23606  = CBS 122990).

Funding
This study was supported by the:
  • Netherlands Organization for Scientific Research (NWO)
  • Foundation for Technical Sciences (STW)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021410-0
2011-09-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2314.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021410-0&mimeType=html&fmt=ahah

References

  1. Asao M., Takaichi S., Madigan M. T. 2007; Thiocapsa imhoffii, sp. nov., an alkaliphilic purple sulfur bacterium of the family Chromatiaceae from Soap Lake, Washington (USA). Arch Microbiol 188:665–675 [View Article][PubMed]
    [Google Scholar]
  2. Asselineau J., Trüper H. G. 1982; Lipid composition of six species of the phototrophic bacterial genus Ectothiorhodospira . Biochim Biophys Acta 712:111–116 [CrossRef]
    [Google Scholar]
  3. Bodrossy L., Holmes E. M., Holmes A. J., Kovács K. L., Murrell J. C. 1997; Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:493–503 [View Article][PubMed]
    [Google Scholar]
  4. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [View Article]
    [Google Scholar]
  5. Braunegg G., Lefebvre G., Genser K. F. 1998; Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161 [View Article][PubMed]
    [Google Scholar]
  6. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  7. Gorlenko V. M., Bryantseva I. A., Rabold S., Tourova T. P., Rubtsova D., Smirnova E., Thiel V., Imhoff J. F. 2009; Ectothiorhodospira variabilis sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes. Int J Syst Evol Microbiol 59:658–664 [View Article][PubMed]
    [Google Scholar]
  8. Hazeu W., Batenburg-van der Vegte W. H., Bruyn J. C. 1980; Some characteristics of Methylococcus mobilis sp. nov.. Arch Microbiol 124:211–220 [View Article]
    [Google Scholar]
  9. Imhoff J. F. 1984; Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89 [View Article]
    [Google Scholar]
  10. Imhoff J. F. 2006; The family Ectothiorhodospiraceae . . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol. 6 pp. 874–886 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  11. Imhoff J. F., Kushner D. J., Kushwaha S. C., Kates M. 1982; Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families. J Bacteriol 150:1192–1201[PubMed]
    [Google Scholar]
  12. Johnson K., Jiang Y., Kleerebezem R., Muyzer G., van Loosdrecht M. C. M. 2009; Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 10:670–676 [View Article][PubMed]
    [Google Scholar]
  13. Kleerebezem R., van Loosdrecht M. C. M. 2007; Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212 [View Article][PubMed]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  15. Marmur J. 1961; Procedure for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  17. Sarma C., Sen A., Varghese R., Misra A. K. 1998; A novel technique for isolation of Frankia and generation of single-spore cultures. Can J Microbiol 44:490–492 [CrossRef]
    [Google Scholar]
  18. Schroeder S., Petrovski S., Campbell B., McIlroy S., Seviour R. 2009; Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge. FEMS Microbiol Lett 297:157–163 [View Article][PubMed]
    [Google Scholar]
  19. Serafim L. S., Lemos P. C., Oliveira R., Reis M. A. M. 2004; Optimization of polyhydroxybutyrate production by mixed cultures submitted to aerobic dynamic feeding conditions. Biotechnol Bioeng 87:145–160 [View Article][PubMed]
    [Google Scholar]
  20. Slater S. C., Voige W. H., Dennis D. E. 1988; Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436[PubMed]
    [Google Scholar]
  21. Sorokin D. Yu., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. 2001; Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580[PubMed]
    [Google Scholar]
  22. Sorokin D. Yu., van Pelt S., Tourova T. P., Takaichi S., Muyzer G. 2007; Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. nov.. Microbiology 153:1157–1164 [View Article][PubMed]
    [Google Scholar]
  23. Steinbüchel A. 2001; Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24 [View Article]
    [Google Scholar]
  24. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  25. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  26. van Loosdrecht M. C., Pot M. A., Heijnen J. J. 1997; Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35:141–47 [View Article]
    [Google Scholar]
  27. Vishniac W., Santer M. 1957; The thiobacilli. Bacteriol Rev 21:195–213[PubMed]
    [Google Scholar]
  28. Watson S. W. 1971; Taxonomic considerations of the family Nitrobacteraceae Buchanan. Int J Syst Bacteriol 21:254–270 [View Article]
    [Google Scholar]
  29. Yokota A., Akagawa-Matsushita M., Hiraishi A., Katayama Y., Urakami T., Yamasato K. 1992; Distribution of quinone systems in microorganisms: gram-negative eubacteria. Bull Jpn Fed Cult Coll 8:136–171
    [Google Scholar]
  30. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021410-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021410-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error