1887

Abstract

Two similar Gram-positive rods were isolated from 10 dilutions of ruminal fluid from a sheep receiving a mixed grass hay/concentrate diet, using a medium containing pancreatic casein hydrolysate as sole source of carbon and energy. The isolates did not ferment sugars, but grew on pyruvate or trypticase, forming caproate as the main fermentation product and valerate to a lesser extent. Acetate and propionate were utilized. One of these strains, I-6, was selected for further study. Strain I-6 was a non-motile coccal rod, 1·2×0·4 μm, with a Gram-positive cell wall ultrastructure and a G+C content of 56·8 mol%. No spores were visible, and strain I-6 did not survive heating at 80 °C for 10 min. Its rate of NH production was 375 nmol (mg protein) min, placing it in the ‘ammonia-hyperproducing’ (or HAP) group of ruminal bacteria. 16S rDNA sequence analysis (1296 bases) indicated that it represents a novel species within the ‘low-G+C’ Gram-positive group, for which the name sp. nov. is proposed. Among cultivated bacteria, strain I-6 was most closely related (89 % identity) to other asaccharolytic isolates from the mouth and the rumen. It was 98 % identical to uncultured bacterial sequences amplified by others from ruminal digesta.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02110-0
2003-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs530965.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02110-0&mimeType=html&fmt=ahah

References

  1. Apajalahti, J. H., Kettunen, A., Bedford, M. R. & Holben, W. E. ( 2001; ). Percent G+C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl Environ Microbiol 67, 5656–5667.[CrossRef]
    [Google Scholar]
  2. Attwood, G. T., Klieve, A. V., Ouwerkerk, D. & Patel, B. K. C. ( 1998; ). Ammonia-hyperproducing bacteria from New Zealand ruminants. Appl Environ Microbiol 64, 1796–1804.
    [Google Scholar]
  3. Cato, E. P. & Stackebrandt, E. ( 1989; ). Taxonomy and phylogeny. In Clostridia, vol. 2, pp. 1–26. Edited by N. P. Minton & D. J. Clarke. New York: Plenum Press.
  4. Cheeseman, S. L., Hiom, S. J., Weightman, A. J. & Wade, W. G. ( 1996; ). Phylogeny of oral asaccharolytic Eubacterium species determined by 16S ribosomal DNA sequence comparison and proposal of Eubacterium infirmum sp. nov. and Eubacterium tardum sp. nov. Int J Syst Bacteriol 46, 957–959.[CrossRef]
    [Google Scholar]
  5. Chen, G. J. & Russell, J. B. ( 1988; ). Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl Environ Microbiol 54, 2742–2749.
    [Google Scholar]
  6. Chen, G. & Russell, J. B. ( 1989; ). More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol 55, 1052–1057.
    [Google Scholar]
  7. Chen, G. & Russell, J. B. ( 1990; ). Transport and deamination of amino acids by a Gram-positive, monensin-sensitive ruminal bacterium. Appl Environ Microbiol 56, 2186–2192.
    [Google Scholar]
  8. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  10. Hamid, M. A., Iwaku, M. & Hoshino, E. ( 1994; ). The metabolism of phenylalanine and leucine by a cell suspension of Eubacterium brachy and the effects of metronidazole on metabolism. Arch Oral Biol 39, 967–972.[CrossRef]
    [Google Scholar]
  11. Hanson, R. S. & Phillips, J. A. ( 1981; ). Chemical composition. In Manual of Methods for General Bacteriology, pp. 328–362. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  12. Herbert, D., Phipps, P. J. & Strange, R. E. ( 1971; ). Chemical analysis of microbial cells. Methods Microbiol 5B, 209–344.
    [Google Scholar]
  13. Hobson, P. N. ( 1969; ). Rumen bacteria. Methods Microbiol 3B, 133–149.
    [Google Scholar]
  14. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  15. Leng, R. A. & Nolan, J. V. ( 1984; ). Nitrogen metabolism in the rumen. J Dairy Sci 67, 1072–1089.[CrossRef]
    [Google Scholar]
  16. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. McEwan, N. R., Wheeler, C. T. & Milner, J. J. ( 1994; ). Strain discrimination of cultured and symbiotic Frankia by RFLP-PCR. Soil Biol Biochem 26, 541–545.[CrossRef]
    [Google Scholar]
  18. McSweeney, C. S., Palmer, B., Bunch, R. & Krause, D. O. ( 1999; ). Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl Environ Microbiol 65, 3075–3083.
    [Google Scholar]
  19. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  20. Paster, B. J., Russell, J. B., Yang, C. M. J., Chow, J. M., Woese, C. R. & Tanner, R. ( 1993; ). Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol 43, 107–110.[CrossRef]
    [Google Scholar]
  21. Richardson, A. J., Calder, A. G., Stewart, C. S. & Smith, A. ( 1989; ). Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 9, 5–8.[CrossRef]
    [Google Scholar]
  22. Russell, J. B., Strobel, H. J. & Chen, G. J. ( 1988; ). Enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl Environ Microbiol 54, 872–877.
    [Google Scholar]
  23. Russell, J. B., Onodera, R. & Hino, T. ( 1991; ). Ruminal protein fermentation: new perspectives on previous contradictions. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 681–697. Edited by T. Tsuda, Y. Sasaki & R. Kawashima. San Diego: Academic Press.
  24. Smith, G. M., Kim, B. W., Franke, A. A. & Roberts, J. D. ( 1985; ). 13C NMR studies of butyric fermentation in Clostridium kluyveri. J Biol Chem 260, 13509–13512.
    [Google Scholar]
  25. Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Namakura, M., Aminov, R. I. & Benno, Y. ( 2000; ). Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6, 273–284.[CrossRef]
    [Google Scholar]
  26. Wade, W. G., Downes, J., Dymock, D., Hiom, S. J., Weightman, A. J., Dewhirst, F. E., Paster, B. J., Tzellas, N. & Coleman, B. ( 1999a; ). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 595–600.[CrossRef]
    [Google Scholar]
  27. Wade, W. G., Downes, J., Munson, M. A. &, Weightman. A. J. ( 1999b; ). Eubacterium minutum is an earlier synonym of Eubacterium tardum and has priority. Int J Syst Bacteriol 49, 1939–1941.[CrossRef]
    [Google Scholar]
  28. Wallace, R. J. ( 1978; ). Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. J Gen Microbiol 107, 45–52.[CrossRef]
    [Google Scholar]
  29. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  30. Whitehead, R., Cooke, G. H. & Chapman, B. T. ( 1967; ). Problems associated with the continuous monitoring of ammoniacal nitrogen in river water. In Automation in Analytical Chemistry, vol. 2, pp. 377–380. White Plains, NY: Mediad.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02110-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02110-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error