1887

Abstract

Two novel thermophilic and slightly acidophilic strains, Kam940 and Kam1507b, which shared 99 % 16S rRNA gene sequence identity, were isolated from terrestrial hot springs of the Uzon caldera on the Kamchatka peninsula. Cells of both strains were non-motile, regular cocci. Growth was observed between 55 and 85 °C, with an optimum at 65–70 °C (doubling time, 6.1 h), and at pH 4.5–7.5, with optimum growth at pH 5.5–6.0. The isolates were strictly anaerobic organotrophs and grew on a narrow spectrum of energy-rich substrates, such as beef extract, gelatin, peptone, pyruvate, sucrose and yeast extract, with yields above 10 cells ml. Sulfate, sulfite, thiosulfate and nitrate added as potential electron acceptors did not stimulate growth when tested with peptone. H at 100 % in the gas phase inhibited growth on peptone. Glycerol dibiphytanyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl rings were present in the lipid fraction of isolate Kam940. The G+C content of the genomic DNA of strain Kam940 was 37 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were archaea of the phylum , only distantly related to the cultured members of the class (no more than 89 % identity), and formed an independent lineage adjacent to the orders and and clustering only with uncultured clones from hot springs of Yellowstone National Park and Iceland as the closest relatives. On the basis of their phylogenetic position and novel phenotypic features, isolates Kam940 and Kam1507b are proposed to be assigned to a new genus and species, gen. nov., sp. nov. The type strain of is strain Kam940 (=DSM 19380 =VKM B-2539). The phylogenetic data as well as phenotypic properties suggest that the novel crenarchaeotes form the basis of a new family, fam. nov., and order, ord. nov., within the class .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019042-0
2010-09-01
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2082.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019042-0&mimeType=html&fmt=ahah

References

  1. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Miroshnichenko M. L. 1994 The influence of molecular hydrogen and elemental sulfur on the metabolism of extremely thermophilic archaea of genus Thermococcus . Microbiology (English translation of Mikrobiologiia ) 63433–437
  4. Bonch-Osmolovskaya E. A., Slesarev A. I., Miroshnichenko M. L., Svetlichnaya T. P., Alekseev V. A. 1988; Characterization of Desulfurococcus amylolyticus n. sp. – a novel extremely thermophilic archaebacterium isolated from Kamchatka and Kurils hot springs. Mikrobiologiia 57:94–101 (in Russian)
    [Google Scholar]
  5. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990a; Desulfurella acetivorans gen. nov. and sp nov; – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  6. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Zavarzin G. A. 1990b; Thermoproteus uzoniensis sp. nov., a new extremely thermophilic archaebacterium from Kamchatka continental hot springs. Arch Microbiol 154:556–559
    [Google Scholar]
  7. Boyd E. S., Jackson R. A., Encarnacion G., Zahn J. A., Beard T., Leavitt W. D., Pi Y., Zhang C. L., Pearson A., Geesey G. G. 2007; Isolation, characterization, and ecology of sulfur-respiring Crenarchaeota inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Appl Environ Microbiol 73:6669–6677 [CrossRef]
    [Google Scholar]
  8. de la Torre J. R., Walker C. B., Ingalls A. E., Könneke M., Stahl D. A. 2008; Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818 [CrossRef]
    [Google Scholar]
  9. Galtier N., Lobry J. R. 1997; Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636 [CrossRef]
    [Google Scholar]
  10. Hatzenpichler R., Lebedeva E. V., Spieck E., Stoecker K., Richter A., Daims H., Wagner M. 2008; A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105:2134–2139 [CrossRef]
    [Google Scholar]
  11. Hopmans E. C., Schouten S., Pancost R. D., van der Meer M. T. J., Sinninghe Damsté J. S. 2000; Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589 [CrossRef]
    [Google Scholar]
  12. Huang Z., Hedlund B., Wiegel J., Zhou J., Zhang C. L. 2007; Molecular phylogeny of uncultivated Crenarchaeota in Great Basin hot springs of moderately elevated temperature. Geomicrobiol J 24:535–542 [CrossRef]
    [Google Scholar]
  13. Huber H., Prangishvili D. 2006; Sulfolobales . In The Prokaryotes: a Handbook on the Biology of Bacteria. , 3rd edn. vol 3 pp 23–51 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  14. Huber H., Stetter K. O. 2006; Desulfurococcales . In The Prokaryotes: a Handbook on the Biology of Bacteria. , 3rd edn. vol 3 pp 52–68 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  15. Itoh T., Suzuki K., Nakase T. 1998; Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int J Syst Bacteriol 48:879–887 [CrossRef]
    [Google Scholar]
  16. Itoh T., Suzuki K., Sanchez P. C., Nakase T. 2003; Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 531149–1154 [CrossRef]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–32 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Kimura H., Sugihara M., Kato K., Hanada S. 2006; Selective phylogenetic analysis targeted at 16S rRNA genes of thermophiles and hyperthermophiles in deep-subsurface geothermal environments. Appl Environ Microbiol 72:21–27 [CrossRef]
    [Google Scholar]
  19. Kolganova T. V., Kuznetsov B. B., Turova T. P. 2002; Designing and testing oligonucleotide primers for amplification and sequencing of archaeal 16S rRNA genes. Mikrobiologiia 71:283–286 (in Russian)
    [Google Scholar]
  20. Kublanov I. V., Perevalova A. A., Slobodkina G. B., Lebedinsky A. V., Bidzhieva S. Kh., Kolganova T. V., Rumsh L. D., Haertle T., Bonch-Osmolovskaya E. A. 2009a; Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka. Appl Environ Microbiol 75:286–291 [CrossRef]
    [Google Scholar]
  21. Kublanov I. V., Bidjieva S. Kh., Mardanov A. V., Bonch-Osmolovskaya E. A. 2009b; Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. Int J Syst Evol Microbiol 59:1743–1747 [CrossRef]
    [Google Scholar]
  22. Kvist T., Ahring B. K., Westermann P. 2007; Archaeal diversity in Icelandic hot springs. FEMS Microbiol Ecol 59:71–80 [CrossRef]
    [Google Scholar]
  23. Lipp J. S., Hinrichs K.-U. 2009; Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta 73:6816–6833 [CrossRef]
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  25. Meyer-Dombard D. R., Shock E. L., Amend J. P. 2005; Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227 [CrossRef]
    [Google Scholar]
  26. Pearson A., Huang Z., Ingalls A. E., Romanek C. S., Wiegel J., Freeman K. H., Smittenberg R. H., Zhang C. L. 2004; Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:5229–5237 [CrossRef]
    [Google Scholar]
  27. Pearson A., Pi Y., Zhao W., Li W., Li Y., Inskeep W., Perevalova A., Romanek C., Li S., Zhang C. L. 2008; Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl Environ Microbiol 74:3523–3532 [CrossRef]
    [Google Scholar]
  28. Perevalova A. A., Svetlichny V. A., Kublanov I. V., Chernyh N. A., Kostrikina N. A., Tourova T. P., Kuznetsov B. B., Bonch-Osmolovskaya E. A. 2005; Desulfurococcus fermentans sp. nov., a novel hyperthermophilic archaeon from a Kamchatka hot spring, and emended description of the genus Desulfurococcus . Int J Syst Evol Microbiol 55:995–999 [CrossRef]
    [Google Scholar]
  29. Perevalova A. A., Kolganova T. V., Birkeland N.-K., Schleper C., Bonch-Osmolovskaya E. A., Lebedinsky A. V. 2008; Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628 [CrossRef]
    [Google Scholar]
  30. Pfennig N., Lippert K. D. 1966; Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–246 (in German) [CrossRef]
    [Google Scholar]
  31. Prokofeva M. I., Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Kuznetsov B. B., Tourova T. P., Bonch-Osmolovskaya E. A. 2000 Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermophilic archaeon from continental hot vents in Kamchatka. Int J Syst Evol Microbiol 50, 2001–2008 [CrossRef]
  32. Prokofeva M. I., Kublanov I. V., Nercessian O., Tourova T. P., Kolganova T. V., Lebedinsky A. V., Bonch-Osmolovskaya E. A., Spring S., Jeanthon C. 2005; Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats. Extremophiles 9:437–448 [CrossRef]
    [Google Scholar]
  33. Prokofeva M. I., Kostrikina N. A., Kolganova T. V., Tourova T. P., Lysenko A. M., Lebedinsky A. V., Bonch-Osmolovskaya E. A. 2009; Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol 59:3116–3122 [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Spear J. R., Walker J. J., McCollom T. M., Pace N. 2005; Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci U S A 102:2555–2560 [CrossRef]
    [Google Scholar]
  36. Sun Z., Armannsson H. 2000; Gas chemistry and subsurface temperature estimation in the Hveragerði high-temperature geothermal field, SW-Iceland. In Proceedings of the World Geothermal Congress pp 2235–2240 28 May–10 June 2000 Kyushu-Tohoku; Japan:
    [Google Scholar]
  37. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biol Sci 10:569–570
    [Google Scholar]
  38. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
  39. Zhang C. L., Pearson A., Li Y.-L., Mills G., Wiegel J. 2006; A thermophilic temperature optimum for crenarchaeol and its implication for archaeal evolution. Appl Environ Microbiol 72:4419–4422 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019042-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019042-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error