1887

Abstract

A Gram-negative, rod-shaped, non-spore-forming, strictly aerobic strain with gliding motility, designated JAMB N27, was isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan, at a depth of 219 m. Strain JAMB N27 contained MK-6 as the major isoprenoid quinone and iso-C, iso-C, C and iso-C as the predominant fatty acids. Casein, chitin, gelatin and starch were degraded. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JAMB N27 represented a separate lineage within the genus . The DNA G+C content of strain JAMB N27 was 33.1 mol%. DNA–DNA relatedness values between strain JAMB N27 and type strains of species of the genus were significantly lower than the cut-off value accepted for the definition of a novel species. Therefore, strain JAMB N27 represents a novel species, for which the name sp. nov. is proposed. The type strain is JAMB N27 (=JCM 15542=NCIMB 14508).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018747-0
2010-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2298.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018747-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. New York: Cambridge University Press;
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Fujiwara Y., Kawato M., Yamamoto T., Yamanaka T., Sato-Okoshi W., Noda C., Tuchida S., Komai T., Cubelio S. S., Sasaki T. 2007; Three-year investigations into sperm whale-fall ecosystems in Japan. Mar Ecol (Berl 28:219–232 [CrossRef]
    [Google Scholar]
  5. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  6. Lewin R. A. 1969; A classification of flexibacteria. J Gen Microbiol 58:189–206 [CrossRef]
    [Google Scholar]
  7. Ludwig W., Strunk O., Westram R. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  8. Miyazaki M., Nogi Y., Usami R., Horikoshi K. 2006 Shewanella surugensis sp. nov., Shewanella kaireitica sp.nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. Int J Syst Evol Microbiol 56, 1607–1613. [CrossRef]
  9. Miyazaki M., Nogi Y., Fujiwara Y., Horikoshi K. 2008a; Psychromonas japonica sp. nov., Psychromonas aquimarina sp.nov., Psychromonas macrocephali sp. nov. and Psychromonas ossibalaenae sp. nov.: psychrotrophic bacteria isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:1709–1714 [CrossRef]
    [Google Scholar]
  10. Miyazaki M., Nogi Y., Fujiwara Y., Kawato M., Kubokawa K., Horikoshi K. 2008b; Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:866–871 [CrossRef]
    [Google Scholar]
  11. Miyazaki M., Nogi Y., Fujiwara Y., Kawato M., Nagahama T., Kubokawa K., Horikoshi K. 2008c; Amphritea japonica sp. nov. and Amphritea balenae sp. nov. isolated from the sediment adjacent to sperm whale carcasses off Kagoshima, Japan. Int J Syst Evol Microbiol 58:2815–2820 [CrossRef]
    [Google Scholar]
  12. Miyazaki M., Nogi Y., Ohta Y., Hatada Y., Fujiwara Y., Ito S., Horikoshi K. 2008d; Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58:1128–1133 [CrossRef]
    [Google Scholar]
  13. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Frolova G. M., Mikhailov V. V., Lee K. H., Bae K. S. 2005; Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [ Cytophaga ] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 55:225–229 [CrossRef]
    [Google Scholar]
  14. Nedashkovskaya O. I., Vancanneyt M., Christiaens L., Kalinovskaya N. I., Mikhailov V. V., Swings J. 2006 Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) asAquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina . Int J Syst Evol Microbiol 56, 2037–2041. [CrossRef]
  15. Nogi Y., Kato C., Horikoshi K. 1998; Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338 [CrossRef]
    [Google Scholar]
  16. Reichenbach H. 1989; Genus I. Cytophaga Winogradsky 1929, 577,AL emend. In Bergey's Manual of Systematic Bacteriology vol 3 pp 2015–2050 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. C. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  20. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rossello-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  21. Swofford D. L. 1998 Phylogenetic analysis using parsimony (paup), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  24. Yoon J.-H., Kang S.-J., Jung S.-Y., Oh H. W., Oh T.-K. 2006; Gaetbulimicrobium brevivitae gen. nov., sp. nov. a novel member of the family Flavobacteriaceae isolated from tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 56115–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.018747-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018747-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error