1887

Abstract

A rod-shaped, non-spore-forming, non-motile, aerobic, oxidase and catalase-positive and radiation-resistant bacterium (designated strain K4.1) was isolated from biofilm collected from a Finnish paper mill. The bacterium grew as pale pink colonies on oligotrophic medium at 12 to 50 °C (optimum 37 to 45 °C) and at pH 6 to 10.3. The DNA G+C content of the strain was 66.8 mol%. According to 16S rRNA gene sequence analysis, strain K4.1 was distantly related to the genus , sharing highest similarity with (90.0 %). In the phylogenetic tree, strain K4.1 formed a separate branch in the vicinity of the genus . The peptidoglycan type was A3 with -Orn–Gly–Gly and the quinone system was determined to be MK-8. The polar lipid profile of strain K4.1 differed markedly from that of the genus . The predominant lipid of strain K4.1 was an unknown aminophospholipid and it did not contain the unknown phosphoglycolipid predominant in the polar lipid profiles of deinococci analysed to date. Two of the predominant fatty acids of the strain, 15 : 0 anteiso and 17 : 0 anteiso, were lacking or present in small amounts in species of the genus . Phylogenetic distinctness and significant differences in the polar lipid and fatty acid profiles suggest classification of strain K4.1 as a novel genus and species in the family , for which we propose the name gen. nov., sp. nov. The type strain is K4.1 (=DSM 21458 =HAMBI 2721).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017970-0
2011-03-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/3/540.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017970-0&mimeType=html&fmt=ahah

References

  1. Albuquerque, L., Simões, C., Nobre, M. F., Pino, N. M., Battista, J. R., Silva, M. T., Rainey, F. A. & da Costa, M. S. ( 2005; ). Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiol Lett 247, 161–169.[CrossRef]
    [Google Scholar]
  2. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef]
    [Google Scholar]
  3. Asker, D., Awad, T. S., Beppu, T. & Ueda, K. ( 2008; ). Deinococcus misasensis and Deinococcus roseus, novel members of the genus Deinococcus, isolated from a radioactive site in Japan. Syst Appl Microbiol 31, 43–49.[CrossRef]
    [Google Scholar]
  4. Asker, D., Awad, T. S., Beppu, T. & Ueda, K. ( 2009; ). Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 59, 144–149.[CrossRef]
    [Google Scholar]
  5. Battista, J. R. & Rainey, F. A. ( 2001; ). Genus I. Deinococcus Brooks and Murray 1981. In Bergey's Manual of Systematic Bacteriology 2nd edn, vol. 1, pp. 396–403. Edited by Boone, D. R., Castenholz, R. W. & Garrity, G. M.. New York. : Springer.
    [Google Scholar]
  6. Bruno, W. J., Socci, N. D. & Halpern, A. L. ( 2000; ). Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17, 189–197.[CrossRef]
    [Google Scholar]
  7. Callegan, R. P., Nobre, M. F., McTernan, P. M., Battista, J. R., Navarro-González, R., McKay, C. P., da Costa, M. S. & Rainey, F. A. ( 2008; ). Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58, 1252–1258.[CrossRef]
    [Google Scholar]
  8. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  9. da Costa, M. S., Nobre, M. F. & Rainey, F. A. ( 2001; ). Genus I. Thermus Brock and Freeze 1969. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 404–414. Edited by Boone, D. R., Castenholz, R. W. & Garrity, G. M.. New York. : Springer.
    [Google Scholar]
  10. de Groot, A., Chapon, V., Servant, P., Christen, R., Fischer-Le Saux, M., Sommer, S. & Heulin, T. ( 2005; ). Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55, 2441–2446.[CrossRef]
    [Google Scholar]
  11. Embley, T. M., O'Donnell, A. G., Wait, R. & Rostron, J. ( 1987; ). Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus. Syst Appl Microbiol 10, 20–27.[CrossRef]
    [Google Scholar]
  12. Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P. & da Costa, M. S. ( 1997; ). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47, 939–947.[CrossRef]
    [Google Scholar]
  13. Halinen, K., Fewer, D. P., Sihvonen, L. M., Lyra, C., Eronen, E. & Sivonen, K. ( 2008; ). Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiol Ecol 64, 199–208.[CrossRef]
    [Google Scholar]
  14. Hirsch, P., Gallikowski, C. A., Siebert, J., Peissl, K., Kroppenstedt, R., Schumann, P., Stackebrandt, E. & Anderson, R. ( 2004; ). Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27, 636–645.[CrossRef]
    [Google Scholar]
  15. Im, W.-T., Jung, H.-M., Ten, L. N., Kim, M. K., Bora, N., Goodfellow, M., Lim, S., Jung, J. & Lee, S.-T. ( 2008; ). Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58, 2348–2353.[CrossRef]
    [Google Scholar]
  16. Kämpfer, P., Lodders, N., Huber, B., Falsen, E. & Busse, H. J. ( 2008; ). Deinococcus aquatilis sp. nov., isolated from water. Int J Syst Evol Microbiol 58, 2803–2806.[CrossRef]
    [Google Scholar]
  17. Kolari, M., Nuutinen, J., Rainey, F. A. & Salkinoja-Salonen, M. S. ( 2003; ). Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbiol Biotechnol 30, 225–238.[CrossRef]
    [Google Scholar]
  18. Lai, W.-A., Kämpfer, P., Arun, A. B., Shen, F.-T., Huber, B., Rekha, P. D. & Young, C.-C. ( 2006; ). Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56, 787–791.[CrossRef]
    [Google Scholar]
  19. MacFaddin, J. F. ( 2000; ). Biochemical Tests for Identification of Medical Bacteria, 3rd edn. Philadelphia, PA. : Lippincott Williams & Wilkins.
    [Google Scholar]
  20. MIDI ( 2001; ). Sherlock Microbial Identification System Operating Manual, version 4.0. Newark, DE. : MIDI, Inc.
    [Google Scholar]
  21. Miroshnichenko, M. L., L'Haridon, S., Nercessian, O., Antipov, A. N., Kostrikina, N. A., Tindall, B. J., Schumann, P., Spring, S., Stackebrandt, E. & other authors ( 2003; ). Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53, 1143–1148.[CrossRef]
    [Google Scholar]
  22. Omelchenko, M. V., Wolf, Y. I., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Daly, M. J., Koonin, E. V. & Makarova, K. S. ( 2005; ). Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 5, 57.[CrossRef]
    [Google Scholar]
  23. Peltola, M., Kanto Öqvist, C., Ekman, J., Kosonen, M., Jokela, S., Kolari, M., Korhonen, P. & Salkinoja-Salonen, M. ( 2008; ). Quantitative contributions of bacteria and of Deinococcus geothermalis to deposits and slimes in paper industry. J Ind Microbiol Biotechnol 35, 1651–1657.[CrossRef]
    [Google Scholar]
  24. Peng, F., Zhang, L., Luo, X., Dai, J., An, H., Tang, Y. & Fang, C. ( 2009; ). Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 59, 709–713.[CrossRef]
    [Google Scholar]
  25. Rainey, F. A., Nobre, M. F., Schumann, P., Stackebrandt, E. & da Costa, M. S. ( 1997; ). Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47, 510–514.[CrossRef]
    [Google Scholar]
  26. Rainey, F. A., Ray, K., Ferreira, M., Gatz, B. Z., Nobre, M. F., Bagaley, D., Rash, B. A., Park, M.-J., Earl, A. M. & other authors ( 2005; ). Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71, 5225–5235.[CrossRef]
    [Google Scholar]
  27. Rainey, F. A., Ferreira, M., Nobre, M. F., Ray, K., Bagaley, D., Earl, A. M., Battista, J. R., Gómez-Silva, B., McKay, C. P. & da Costa, M. S. ( 2007; ). Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol 57, 1408–1412.[CrossRef]
    [Google Scholar]
  28. Raulio, M., Järn, M., Ahola, J., Peltonen, J., Rosenholm, J. B., Tervakangas, S., Kolehmainen, J., Ruokolainen, T., Narko, P. & Salkinoja-Salonen, M. ( 2008; ). Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods. J Ind Microbiol Biotechnol 35, 751–760.[CrossRef]
    [Google Scholar]
  29. Schleifer, K. H. ( 1985; ). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156.
    [Google Scholar]
  30. Tijssen, J. P. F., Beekes, H. W. & Van Steveninck, J. ( 1982; ). Localization of polyphosphates in Saccharomyces fragilis, as revealed by 4′,6-diamidino-2-phenylindole fluorescence. Biochim Biophys Acta 721, 394–398.[CrossRef]
    [Google Scholar]
  31. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  32. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  33. Weon, H.-Y., Kim, B.-Y., Schumann, P., Son, J.-A., Jang, J., Go, S.-J. & Kwon, S.-W. ( 2007; ). Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57, 1685–1688.[CrossRef]
    [Google Scholar]
  34. Yang, Y., Itoh, T., Yokobori, S., Itahashi, S., Shimada, H., Satoh, K., Ohba, H., Narumi, I. & Yamagishi, A. ( 2009; ). Deinococcus aerius sp. nov., isolated from the high atmosphere. Int J Syst Evol Microbiol 59, 1862–1866.[CrossRef]
    [Google Scholar]
  35. Yuan, M., Zhang, W., Dai, S., Wu, J., Wang, Y., Tao, T., Chen, M. & Lin, M. ( 2009; ). Deinococcus gobiensis sp. nov., an extremely radiation-resistant bacterium. Int J Syst Evol Microbiol 59, 1513–1517.[CrossRef]
    [Google Scholar]
  36. Zhang, Y. Q., Sun, C. H., Li, W. J., Yu, L. Y., Zhou, J. Q., Zhang, Y. Q., Xu, L. H. & Jiang, C. L. ( 2007; ). Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57, 370–375.[CrossRef]
    [Google Scholar]
  37. Zimmerman, J. M. & Battista, J. R. ( 2006; ). Measuring survival in microbial populations following exposure to ionizing radiation. In Extremophiles, Methods in Microbiology, vol. 35, pp. 745–754. Edited by Rainey, F. A. & Oren, A.. London. : Academic Press.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017970-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017970-0
Loading

Data & Media loading...

Supplements

Phase-contrast micrograph of strain K4.1 grown in tryptic soy broth for 1 day (a) and 2 days (b) at 45 °C.

IMAGE

Thin sections of strain K4.1 visualized by TEM showing presumably polyphosphate and lipid inclusion bodies (black and white arrowheads respectively).

IMAGE

Radiation resistance of strains K4.1 , 20539 and ATCC 51739.

IMAGE

. Maximum-likelihood tree reconstructed from 16S rRNA gene sequences of strain K4.1 and 50 species from the phylum MD-66 (D32255) and J-10-fl (D38365) were used as an outgroup (not shown). The phylogenetic tree and bootstrap values (1000 resamplings) were reconstructed using the paup program as previously described (Halinen , 2008). The aligned sequences were obtained from the Ribosomal Database project II (Cole , 2007). After manual editing and removal of ambiguous bases, 1258 bp were used for analysis. Thick branches denote support in maximum-likelihood, neighbour-joining and maximum-parsimony analysis. Neighbour-joining and maximum-parsimony bootstrap values over 70 % are given above and below the branches, respectively. Bar, 0.1 substitutions per site.

IMAGE

Table S1 (68 KB)

EXCEL

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error