1887

Abstract

Gram-reaction-positive, aerobic, non-spore-forming, irregular rod-shaped bacteria, designated AHU1821 and AHU1820, were isolated from an ice wedge in the Fox permafrost tunnel, Alaska. The strains were psychrophilic, growing at −5 to 27 °C. Phylogenetic analysis of the 16S rRNA and gene sequences indicated that the ice-wedge isolates formed a clade distinct from other mycolic-acid-containing bacteria within the suborder . The cell wall of strains AHU1821 and AHU1820 contained -diaminopimelic acid, arabinose and galactose, indicating chemotype IV. The muramic acids in the peptidoglycan were glycolated. The predominant menaquinone was MK-9(H). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified glycolipid. The major fatty acids were hexadecenoic acid (C), hexadecanoic acid (C), octadecenoic acid (C) and tetradecanoic acid (C). Tuberculostearic acid was present in relatively small amounts (1 %). Strains AHU1821 and AHU1820 contained mycolic acids with 42–52 carbons. The DNA G+C content of the two strains was 69.3–71.6 mol% ( ). 16S rRNA, and gene sequences were identical between strains AHU1821 and AHU1820 and those of the gene showed 99.9 % similarity. Based on phylogenetic and phenotypic evidence, strains AHU1821 and AHU1820 represent a single novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is AHU1821 (=DSM 45403 =NBRC 106253).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.017962-0
2010-12-01
2020-11-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2803.html?itemId=/content/journal/ijsem/10.1099/ijs.0.017962-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Katsuta A., Matsuda S., Peng X., Misawa N., Shizuri Y., Kroppenstedt R. M., Yokota A., Kasai H. 2007; Smaragdicoccus niigatensis gen. nov., sp. nov. a novel member of the suborder Corynebacterineae . Int J Syst Evol Microbiol 57:297–301 [CrossRef]
    [Google Scholar]
  2. Adékambi T., Shinnick T. M., Raoult D., Drancourt M. 2008; Complete rpoB sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 58:1807–1814 [CrossRef]
    [Google Scholar]
  3. Butler W. R., Floyd M. M., Brown J. M., Toney S. R., Daneshvar M. I., Cooksey R. S., Carr J., Steigerwalt A. G., Charles N. 2005; Novel mycolic acid-containing bacteria in the family Segniliparaceae fam. nov., including the genus Segniliparus gen. nov., with descriptions of Segniliparus rotundus sp.nov. and Segniliparus rugosus sp. nov.. Int J Syst Evol Microbiol 55:1615–1624 [CrossRef]
    [Google Scholar]
  4. Goodfellow M., Maldonado L. A. 2006; The families Dietziaceae , Gordoniaceae , Nocardiaceae and Tsukamurellaceae . In The Prokaryotes. A Handbook on the Biology of Bacteria, 3rd edn. vol 3 pp 843–888 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  5. Gounot A. M., Russell N. J. 1999; Physiology of cold-adapted microorganisms. In Cold-adapted Organisms pp 33–55 Edited by Margesin R., Schinner F. New York: Springer;
    [Google Scholar]
  6. Katayama T., Tanaka M., Moriizumi J., Nakamura T., Brouchkov A., Douglas T. A., Fukuda M., Tomita F., Asano K. 2007; Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73:2360–2363 [CrossRef]
    [Google Scholar]
  7. Katayama T., Kato T., Tanaka M., Douglas T. A., Brouchkov A., Fukuda M., Tomita F., Asano K. 2009; Glaciibacter superstes gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from a permafrost ice wedge. Int J Syst Evol Microbiol 59:482–486 [CrossRef]
    [Google Scholar]
  8. Keweloh H., Heipieper H. J. 1996; Trans unsaturated fatty acids in bacteria. Lipids 31:129–137 [CrossRef]
    [Google Scholar]
  9. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [CrossRef]
    [Google Scholar]
  10. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  11. Soddell J. A., Stainsby F. M., Eales K. L., Kroppenstedt R. M., Seviour R. J., Goodfellow M. 2006; Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56:739–744. [CrossRef]
    [Google Scholar]
  12. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  13. Yano I., Saito K., Fukukawa Y., Kusunose M. 1972; Structural analysis of molecular species of nocardomycolic acids from Nocardia erythropolis by the combined system of gas chromatography and mass spectrometry. FEBS Lett 21:215–219 [CrossRef]
    [Google Scholar]
  14. Zhi X. Y., Li W. J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria , with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.017962-0
Loading
/content/journal/ijsem/10.1099/ijs.0.017962-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error