1887

Abstract

A tangerine-coloured, Gram-positive actinobacterial strain, designated F10, was isolated from the abdominal epidermis of a sea cucumber, , collected in seawater off the coast of Japan. A 16S rRNA gene sequence analysis indicated that strain F10 was a member of the class and was most closely related to ANL-iso2 (87.4 % sequence similarity). Phylogenetic analyses showed that strain F10 represented a novel, deep-rooted, and distinct phylogenetic lineage within the class and clustered with and uncultured bacteria. The organism had -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, and rhamnose and galactose as the diagnostic cell-wall sugars. Strain F10 contained C 7, C and C 8 as the major cellular fatty acids. The predominant isoprenoid quinone was MK-9 (H). The G+C content of the DNA was 68.3 mol%. Based on data from the current polyphasic study, it is proposed that the new marine isolate be placed in a novel genus and be considered a novel species designated gen. nov., sp. nov. within the new family, order and subclass fam. nov., ord. nov. and subclassis nov. in the class . The type strain of is F10 (=NBRC 105439 =KCTC 19736).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.016543-0
2010-10-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/10/2314.html?itemId=/content/journal/ijsem/10.1099/ijs.0.016543-0&mimeType=html&fmt=ahah

References

  1. Bull A. T., Stach J. E. M., Ward A. C., Goodfellow M. 2005; Marine actinobacteria: perspectives, challenges and future directions. Antonie van Leeuwenhoek 87:65–79 [CrossRef]
    [Google Scholar]
  2. Clark D. A., Norris P. R. 1996; Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790 [CrossRef]
    [Google Scholar]
  3. Demharter W., Hensel R., Smida J., Stackebrandt E. 1989; Sphaerobacter thermophilus gen. nov., sp. nov. A deeply rooting member of the actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst Appl Microbiol 11:261–266 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  6. Fukunaga Y., Kurahashi M., Tanaka K., Yanagi K., Yokota A., Harayama S. 2006; Pseudovibrio ascidiaceicola sp. nov., isolated from ascidians (sea squirts). Int J Syst Evol Microbiol 56:343–347 [CrossRef]
    [Google Scholar]
  7. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [CrossRef]
    [Google Scholar]
  8. Hugenholtz P., Stackebrandt E. 2004 Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54, 2049–2051 [CrossRef]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  11. Kurahashi M., Yokota A. 2004; Agarivorans albus gen. nov., sp. nov. a γ -proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 54693–697 [CrossRef]
    [Google Scholar]
  12. Kurahashi M., Fukunaga Y., Sakiyama Y., Harayama S., Yokota A. 2009; Iamia majanohamensis gen. nov., sp. nov. an actinobacterium isolated from sea cucumber Holothuria edulis , and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 59869–873 [CrossRef]
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  15. Mirza M. S., Hahn D., Akkermans A. D. L. 1992; Isolation and characterization. of Frankia strains from Coriaria nepalensis . Syst Appl Microbiol 15:289–295 [CrossRef]
    [Google Scholar]
  16. Mohagheghi M., Grohmann K., Himmel M., Leighton L., Updegraff D. M. 1986; Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Bacteriol 36:435–443 [CrossRef]
    [Google Scholar]
  17. Normand P. 2006; The families Frankiaceae, Geodermatophilaceae, Acidothermaceae and Sporichthyaceae . In The Prokaryotes, 3rd edn. pp 669–681 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  18. Normand P., Orso S., Cournoyer B., Jeannin P., Chapelon C., Dawson J., Evtushenko L., Misra K. 1996; Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae . Int J Syst Bacteriol 46:1–9 [CrossRef]
    [Google Scholar]
  19. Pearson W. R. 1994; Using the fasta program to search protein and DNA sequence databases. Methods Mol Biol 24:307–331
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Sakane T., Kuroshima K. 1997; Viabilities of dried cultures of various bacteria after preservation for over 20 years and their prediction by the accelerated storage test. Microbiol Cult Collect 13:1–7
    [Google Scholar]
  22. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  23. Sorokin D. Y., Pelt S., Tourova T. P., Evtushenko L. I. 2009; Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam.nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59:248–253 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence aligment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249–260 [CrossRef]
    [Google Scholar]
  27. Wako Pure Chemical Industries; 1989; Technical note on the system of PTC-amino acid analysis . Osaka: Wako; Pure Chemical Industries (in Japanese
  28. Zhi X.-Y., Li W.-J., Stackebrandt E. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria , with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.016543-0
Loading
/content/journal/ijsem/10.1099/ijs.0.016543-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error