1887

Abstract

Ten non-motile, Gram-stain-positive, coagulase-negative staphylococci were isolated from bovine milk and teat apices. All isolates were catalase-positive, with anteiso-C, iso-C, anteiso-C, iso-C and C as predominant fatty acids and diphosphatidylglycerol and phosphatidylglycerol as major polar lipids. The results of sequence analysis of the 16S rRNA gene and four housekeeping genes (, , and ) in combination with tRNA-intergenic spacer length analysis showed that the isolates form a separate branch within the genus . Based on 16S rRNA gene sequencing, the phylogenetically most closely related species are , and , with >98.7 % sequence similarity. The DNA G+C content varies from 33.3 to 33.7 mol%, and DNA–DNA hybridization with the nearest neighbours, based on 16S rRNA gene sequences, confirmed that the isolates represent a novel species. All isolates induced a small zone of complete haemolysis on Columbia agar with 5 % sheep blood and exhibited a homogeneous biochemical fingerprint that is discriminative from the phylogenetically most closely related species. Based on these results, it is proposed to classify the ten isolates as sp. nov., with strain KS-SP 60 (=LMG 25332 =CCUG 58238) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015982-0
2010-12-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/12/2739.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015982-0&mimeType=html&fmt=ahah

References

  1. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter , with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [CrossRef]
    [Google Scholar]
  2. CLSI 2007 Interpretive criteria for microorganism identification by DNA target sequencing. Proposed Guideline . CLSI document MM18-P. (ISBN 1-56238-646-8) Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  3. Coenye T., Enevold F., Vancanneyt M., Hoste B., Govan J. R. W., Kersters K., Vandamme P. 1999; Classification of Alcaligenes faecalis -like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49:405–413 [CrossRef]
    [Google Scholar]
  4. De Vliegher S., Laevens H., Devriese L. A., Opsomer G., Leroy J. L., Barkema H. W., de Kruif A. 2003; Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation. Vet Microbiol 92:245–252 [CrossRef]
    [Google Scholar]
  5. De Vliegher S., Opsomer G., Vanrolleghem A., Devriese L. A., Sampimon O. C., Sol J., Barkema H. W., Haesebrouck F. 2004; In vitro growth inhibition of major mastitis pathogens by Staphylococcus chromogenes originating from teat apices of dairy heifers. Vet Microbiol 101:215–221 [CrossRef]
    [Google Scholar]
  6. Devriese L. A. 1979; Identification of clumping factor negative staphylococci isolated from cows' udders. Res Vet Sci 27:313–320
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  9. Freney J., Kloos W. E., Hajek V., Webster J. A., Bes M., Brun Y., Vernozy-Rozand C. 1999; Recommended minimal standards for description of new staphylococcal species. Int J Syst Bacteriol 49:489–502 [CrossRef]
    [Google Scholar]
  10. Gevers D., Huys G., Swings J. 2001; Application of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36 [CrossRef]
    [Google Scholar]
  11. Gillespie B. E., Headrick S. I., Boonyayatra S., Oliver S. P. 2009; Prevalence and persistence of coagulase-negative Staphylococcus species in three dairy research herds. Vet Microbiol 134:65–72 [CrossRef]
    [Google Scholar]
  12. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  13. Hogan J. S., Gonzáles R. N., Harmon R. J., Nickerson S. C., Oliver S. P., Pankey J. W., Smith K. L. 1999 Laboratory Handbook on Bovine Mastitis, revised edn. Madison, WI: National Mastitis Council;
    [Google Scholar]
  14. Jousson O., Di Bello D., Vanni M., Cardini G., Soldani G., Pretti C., Intorre L. 2007; Genotypic versus phenotypic identification of staphylococcal species of canine origin with special reference to Staphylococcus schleiferi. subsp., coagulans . Vet Microbiol 123:238–244. [CrossRef]
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  16. Kocur M., Bergan T., Mortensen N. 1971; DNA base composition of Gram-positive cocci. J Gen Microbiol 69:167–183 [CrossRef]
    [Google Scholar]
  17. Kotilainen P., Huovinen P., Eerola E. 1991; Application of gas-liquid chromatographic analysis of cellular fatty acids for species identification and typing of coagulase-negative staphylococci. J Clin Microbiol 29:315–322
    [Google Scholar]
  18. Mellmann A., Becker K., van Eiff C., Keckevoet U., Schumann P., Harmsen D. 2006; Sequencing and staphylococci identification. Emerg Infect Dis 12:333–336 [CrossRef]
    [Google Scholar]
  19. Mergaert J., Verhelst A., Cnockaert M. C., Tan T.-L., Swings J. 2001; Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst Appl Microbiol 24:98–107 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Nahaie M. R., Goodfellow M., Minnikin D. E., Hajek V. 1984; Polar lipid and isoprenoid quinine composition in the classification of Staphylococcus . J Gen Microbiol 130:2427–2437
    [Google Scholar]
  22. Nováková D., Pantůček R., Hubálek Z., Falsen E., Busse H.-J., Schumann P., Sedláček I. 2010; Staphylococcus microti sp. nov., isolated from the common vole ( Microtus arvalis . Int J Syst Evol Microbiol 60:566–573 [CrossRef]
    [Google Scholar]
  23. Piepers S. L., De Meulemeester L., de Kruif A., Opsomer G., Barkema H. W., De Vliegher S. 2007; Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders. Belgium. J Dairy Res 74:478–483
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  25. Schukken Y. H., Gonzalez R. N., Tikofsky L. L., Schulte H. F., Santisteban G. C., Welcome F. L., Bennett G. J., Zurakowski M. J., Zadoks R. N. 2009; CNS mastitis: nothing to worry about?. Vet Microbiol 134:9–14 [CrossRef]
    [Google Scholar]
  26. Shah M. M., Iihara H., Noda M., Song S. X., Nhung P. H., Ohkusu K., Kawamura Y., Ezaki T. 2007; dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus . Int J Syst Evol Microbiol 57:25–30 [CrossRef]
    [Google Scholar]
  27. Supré K., De Vliegher S., Sampimon O. C., Zadoks R. N., Vaneechoutte M., Baele M., De Graef E., Piepers S., Haesebrouck F. 2009; Use of tRNA-intergenic spacer PCR combined with capillary electrophoresis to identify coagulase-negative Staphylococcus species originating from bovine milk and teat apices. J Dairy Sci 92:3204–3210 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Zadoks R. N., Watts J. L. 2009; Species identification of coagulase-negative staphylococci: genotyping is superior to phenotyping. Vet Microbiol 134:20–28 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015982-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015982-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error