1887

Abstract

Two novel haloalkaliphilic archaea, strains CG-6 and CG-4, were isolated from sediment of the hypersaline Lake Chagannor in Inner Mongolia, China. Cells of the two strains were pleomorphic, non-motile and strictly aerobic. They required at least 2.5 M NaCl for growth, with optimum growth at 3.4 M NaCl. They grew at pH 8.0–11.0, with optimum growth at pH 9.0. Hypotonic treatment with less than 1.5 M NaCl caused cell lysis. The two strains had similar polar lipid compositions, possessing CC and CC derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. No glycolipids were detected. Comparison of 16S rRNA gene sequences and morphological features placed them in the genus . 16S rRNA gene sequence similarities to strains of recognized species of the genus were 96.2–93.8 %. Detailed phenotypic characterization and DNA–DNA hybridization studies revealed that the two strains belong to a novel species in the genus , for which the name sp. nov. is proposed; the type strain is CG-6 (=CECT 7487 =CGMCC 1.8981 =JCM 15982).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015602-0
2010-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1802.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015602-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Dewhirst, F. E., Paster, B. J., Volcani, B. E. & Ventosa, A. ( 1996; ). Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 62, 3779–3786.
    [Google Scholar]
  2. Bardavid, R. E., Mana, L. & Oren, A. ( 2007; ). Haloplanus natans gen. nov., sp. nov., an extremely halophilic gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57, 780–783.[CrossRef]
    [Google Scholar]
  3. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  4. Burns, D. G., Janssen, P. H., Itoh, T., Kamekura, M., Li, Z., Jensen, G., Rodríguez-Valera, F., Bolhuis, H. & Dyall-Smith, M. L. ( 2007; ). Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57, 387–392.[CrossRef]
    [Google Scholar]
  5. Castillo, A. M., Gutiérrez, M. C., Kamekura, M., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006a; ). Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56, 765–770.[CrossRef]
    [Google Scholar]
  6. Castillo, A. M., Gutiérrez, M. C., Kamekura, M., Xue, Y., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006b; ). Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56, 1519–1524.[CrossRef]
    [Google Scholar]
  7. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  8. Cui, H.-L., Tohty, D., Feng, J., Zhou, P.-J. & Liu, S.-J. ( 2006; ). Natronorubrum aibiense sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China, and emended description of the genus Natronobacterium. Int J Syst Evol Microbiol 56, 1515–1517.[CrossRef]
    [Google Scholar]
  9. Cui, H.-L., Tohty, D., Liu, H.-C., Liu, S.-J., Oren, A. & Zhou, P.-J. ( 2007; ). Natronorubrum sulfidifaciens sp. nov., an extremely haloalkaliphilic archaeon isolated from Aiding salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 57, 738–740.[CrossRef]
    [Google Scholar]
  10. De Ley, J. & Tijtgat, R. ( 1970; ). Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36, 461–474.[CrossRef]
    [Google Scholar]
  11. Duckworth, A. W., Grant, W. D., Jones, B. E. & van Steenbergen, R. ( 1996; ). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19, 181–191.[CrossRef]
    [Google Scholar]
  12. Gomori, G. ( 1955; ). Preparation of buffers for use in enzyme studies. Methods Enzymol 1, 138–146.
    [Google Scholar]
  13. Grant, W. D., Kamekura, M., McGenity, T. J. & Ventosa, A. ( 2001; ). Order I. Halobacteriales Grant and Larsen 1989b, 495VP (Effective publication: Grant and Larsen 1989a, 2216). In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 294–334. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  14. Gutiérrez, M. C., Castillo, A. M., Kamekura, M., Xue, Y., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2007; ). Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57, 1402–1407.[CrossRef]
    [Google Scholar]
  15. Hezayen, F. F., Rehm, B. H. A., Tindall, B. J. & Steinbüchel, A. ( 2001; ). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51, 1133–1142.[CrossRef]
    [Google Scholar]
  16. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  17. Kamekura, M. ( 1993; ). Lipids of extreme halophiles. In The Biology of Halophilic Bacteria, pp. 135–161. Edited by R. H. Vreeland & L. I. Hochstein. Boca Raton, FL: CRC Press.
  18. Kamekura, M. & Dyall-Smith, M. L. ( 1995; ). Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41, 333–350.[CrossRef]
    [Google Scholar]
  19. López-García, P., Moreira, D., López-López, A. & Rodríguez-Valera, F. ( 2001; ). A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ Microbiol 3, 72–78.[CrossRef]
    [Google Scholar]
  20. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenernegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H. ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef]
    [Google Scholar]
  21. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  22. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  23. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  24. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  25. Oren, A., Arahal, D. R. & Ventosa, A. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59, 637–642.[CrossRef]
    [Google Scholar]
  26. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn, pp. 277–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57, 19–24.[CrossRef]
    [Google Scholar]
  29. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2008; ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58, 856–860.[CrossRef]
    [Google Scholar]
  30. Stackebrandt, E., Fredericksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  31. Torreblanca, M., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M. & Kates, M. ( 1986; ). Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8, 89–99.[CrossRef]
    [Google Scholar]
  32. Ventosa, A. ( 2006; ). Unusual microorganisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance (Society for General Microbiology Symposium no. 66), pp. 223–253. Edited by N. A. Logan, H. M. Lappin-Scott & P. C. F. Oyston. Cambridge: Cambridge University Press.
  33. Xu, Y., Zhou, P. & Tian, X. ( 1999; ). Characterization of two novel haloalkaliphilic archaea, Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49, 261–266.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015602-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015602-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 1802 - 1806

TLC of polar lipids extracted from sp. nov. strains CG-6 and CG-4 and some other haloarchaea. Lanes: 1, JCM 8978 ; 2, JCM 8879 ; 3, CG-4; 4, CG-6 ; 5, JCM 8877 ; 6, JCM 9576 . PG, Phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester. Circled spots are glycolipids.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error