1887

Abstract

A novel, hydrogen- and sulfur-oxidizing bacterium, designated strain 6C, was isolated from a hot spring in Graendalur, south-western Iceland. Cells of this organism were Gram-reaction-negative, rod-shaped and motile. The strain grew aerobically and was capable of chemolithotrophic growth on thiosulfate and hydrogen, heterotrophic growth on pyruvate, oxalate, acetate and on glutamate in the presence of yeast extract and mixotrophic growth on several organic compounds, thiosulfate and/or hydrogen. During growth on thiosulfate, the final product was sulfate, resulting in a drop in pH from 6.8 to 2.7. Heterotrophic growth on pyruvate was observed at pH 4–7 (optimum pH 4) and 35–50 °C (optimum 45 °C). The DNA G+C content was 65.2 mol%. As determined by 16S rRNA gene sequence analysis, strain 6C represents a distinct species belonging to the class and is most closely related to DSM 18155 and DSM 18570. DNA–DNA hybridization between strain 6C and DSM 18155 and DSM 18570 gave relatedness values below 32 %. These results, together with physiological characteristics, showed that strain 6C represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 6C (=DSM 21436 =JCM 16107).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015511-0
2011-01-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/1/132.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015511-0&mimeType=html&fmt=ahah

References

  1. Aragno, M. ( 1992; ). Aerobic, chemolithoautotrophic, thermophilic bacteria. In Thermophilic Bacteria, pp. 77–103. Edited by Kristjansson, J. K.. Boca Raton, FL. : CRC Press, Inc.
    [Google Scholar]
  2. Battaglia-Brunet, F., Dictor, M. C., Garrido, F., Crouzet, C., Morin, D., Dekeyser, K., Clarens, M. & Baranger, P. ( 2002; ). An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93, 656–667.[CrossRef]
    [Google Scholar]
  3. Battaglia-Brunet, F., Joulian, C., Garrido, F., Dictor, M. C., Morin, D., Coupland, C., Johnson, D. B., Hallberg, K. B. & Baranger, P. ( 2006; ). Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie van Leeuwenhoek 89, 99–108.[CrossRef]
    [Google Scholar]
  4. Bruneel, O., Personné, J. C., Casiot, C., LeBlanc, M., Poulichet, F. E., Mahler, B. J., Le Fléche, A. & Grimont, P. A. D. ( 2003; ). Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulés, France). J Appl Microbiol 95, 492–499.[CrossRef]
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. Coupland, K., Battaglia-Brunet, F., Hallberg, K. B., Dictor, M. C., Garrido, F. & Johnson, D. B. ( 2004; ). Oxidation of iron, sulfur and arsenic in mine waters and mine wastes: an important role for novel Thiomonas spp. In Biohydrometallurgy: a Sustainable Technology in Evolution, pp. 639–646. Edited by Tsezos, M., Hatzikioseyjan, A. & Remoudaki, E.. Zografou, Greece. : Technical University of Athens.
    [Google Scholar]
  7. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  8. Dennison, F., Sen, A. M., Hallberg, K. B. & Johnson, D. B. ( 2001; ). Biological versus abiotic oxidation of iron in acid mine drainage waters: an important role for moderately acidophilic, iron-oxidizing bacteria. In Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, pp. 493–501. Edited by Ciminelli, V. E. & Garcia, O.. Amsterdam. : Elsevier.
    [Google Scholar]
  9. Drobner, E., Huber, H. & Stetter, K. O. ( 1990; ). Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Appl Environ Microbiol 56, 2922–2923.
    [Google Scholar]
  10. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  11. Huber, H. & Stetter, K. O. ( 1990; ). Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. Appl Environ Microbiol 56, 315–322.
    [Google Scholar]
  12. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  13. Johnson, D. B. & Hallberg, K. B. ( 2005; ). Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci Total Environ 338, 81–93.[CrossRef]
    [Google Scholar]
  14. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro, H. N.. New York. : Academic Press.
    [Google Scholar]
  15. Kaserer, H. ( 1906; ). Die oxydation des wasserstoffes durch mikroorganismen. Centr Bacteriol Parasitenkd 16, 681–696 (in German).
    [Google Scholar]
  16. Katayama-Fujimura, Y., Kawashima, I., Tsuzaki, N. & Kuraishi, H. ( 1983; ). Reidentification of Thiobacillus perometabolis ATCC 27793 and Thiobacillus sp. strain A2 with reference to a new species, Thiobacillus rapidicrenscens sp. nov. Int J Syst Bacteriol 33, 532–538.[CrossRef]
    [Google Scholar]
  17. Katayama-Fujimura, Y., Kawashima, I., Tsuzaki, N. & Kuraishi, H. ( 1984; ). Physiological characteristics of the facultatively chemolithotrophic Thiobacillus species Thiobacillus delicatus nom. rev., emend., Thiobacillus perometabolis and Thiobacillus intermedius. Int J Syst Bacteriol 34, 139–144.[CrossRef]
    [Google Scholar]
  18. Katayama-Fujimura, Y., Uchino, Y., Wood, A. P. & Kelly, D. P. ( 2006; ). Confirmation of Thiomonas delicata (formerly Thiobacillus delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to the genus. Int J Syst Evol Microbiol 56, 2553–2557.[CrossRef]
    [Google Scholar]
  19. Kelly, D. P. & Wood, A. ( 2000; ). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50, 511–516.[CrossRef]
    [Google Scholar]
  20. Kelly, D. P. & Wood, A. ( 2005; ). Genus incertae sedis XVIII. Thiomonas Moreira and Amils 1997, 527VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2C, pp. 757–759. Edited by Brenner, D. J., Krieg, N. R., Staley, J. T. & Garrity, B. M.. New York. : Springer.
    [Google Scholar]
  21. Kelly, D. P., Uchino, Y., Huber, H., Amils, R. & Wood, A. P. ( 2007; ). Reassessment of the phylogenetic relationships of Thiomonas cuprina. Int J Syst Evol Microbiol 57, 2720–2724.[CrossRef]
    [Google Scholar]
  22. London, J. ( 1963; ). Thiobacillus intermedius nov. sp., a novel type of facultative autotroph. Arch Mikrobiol 46, 329–337.[CrossRef]
    [Google Scholar]
  23. London, J. & Rittenberg, S. C. ( 1967; ). Thiobacillus perometabolis nov. sp., a non-autotrophic Thiobacillus. Arch Mikrobiol 59, 218–225.[CrossRef]
    [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  25. Moreira, D. & Amils, R. ( 1997; ). Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47, 522–528.[CrossRef]
    [Google Scholar]
  26. Orlygsson, J. & Baldursson, S. R. B. ( 2007; ). Phylogenetic and physiological studies of four hydrogen-producing thermoanaerobes from Icelandic geothermal areas. Icel Agric Sci 20, 93–105.
    [Google Scholar]
  27. Panda, S. K., Jyoti, V., Bhadra, B., Nayak, K. C., Shivaji, S., Rainey, F. A. & Das, S. K. ( 2009; ). Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic moderately thermophilic, thiosulfate-oxidizing bacterium. Int J Syst Evol Microbiol 59, 2171–2175.[CrossRef]
    [Google Scholar]
  28. Ruhland, W. ( 1924; ). Beitrage zur Physiologie der Knallgasbacterien. Jahrb Wiss Botan 63, 321–389 (in German).
    [Google Scholar]
  29. Schatz, A. & Bovell, C. R. ( 1952; ). Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol 63, 87–98.
    [Google Scholar]
  30. Shooner, F., Bousquet, J. & Tyagi, R. D. ( 1996; ). Isolation, phenotypic characterization, and phylogenetic position of a novel, facultative autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int J Syst Bacteriol 46, 409–415.[CrossRef]
    [Google Scholar]
  31. Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K. ( 2000; ). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef]
    [Google Scholar]
  32. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R.. Washington, DC. : Americal Society for Microbiology.
    [Google Scholar]
  33. Tabatabai, M. A. ( 1974; ). A rapid method for determination of sulfate in water samples. Environ Lett 7, 237–243.[CrossRef]
    [Google Scholar]
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  35. Van de Peer, Y. & De Wachter, R. ( 1997; ). Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13, 227–230.
    [Google Scholar]
  36. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015511-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015511-0
Loading

Data & Media loading...

Supplements

Scanning electron micrograph of cells of strain 6C . Bar, 2μm

IMAGE

Growth of strain 6C during HOX and SOX conditions, HOX and heterotrophic (pyruvate) conditions and SOX and heterotrophic (pyruvate) conditions. [PDF]

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error