1887

Abstract

Three Gram-stain-negative, obligately anaerobic, non-spore-forming, rod-shaped bacteria (strains YIT 12056, YIT 12057 and YIT 12058) were isolated from human faeces. These strains were characterized by phylogenetic analyses based on 16S rRNA gene sequence and phenotypic tests. 16S rRNA gene sequence analyses revealed that strains YIT 12056, YIT 12057 and YIT 12058 were most closely related to the type strains of , and with approximate similarity values of 96.6, 95.0 and 96.7 %, respectively. The DNA G+C contents of the novel strains were 45.3 (YIT 12056), 45.2 (YIT 12057) and 43.6 mol% (YIT 12058) and the major respiratory quinones of all three isolates were menaquinones MK-10 and MK-11. These properties were typical for members of the genus . The results of the other phenotypic analyses also supported the affiliation of these strains to the genus . The 16S rRNA gene sequence analysis, analysis of the major cellular fatty acids and other biochemical tests enabled the genotypic and phenotypic differentiation of the three new strains. Based on these data, three novel species, sp. nov., sp. nov. and sp. nov. are proposed. The type strains of , and are YIT 12056 (=JCM 16067=DSM 22519), YIT 12057 (=JCM 16101=DSM 22534) and YIT 12058 (=JCM 16102=DSM 22535), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.015107-0
2010-08-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/8/1864.html?itemId=/content/journal/ijsem/10.1099/ijs.0.015107-0&mimeType=html&fmt=ahah

References

  1. Bakir, M. A., Kitahara, M., Sakamoto, M., Matsumoto, M. & Benno, Y. ( 2006; ). Bacteroides intestinalis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 56, 151–154.[CrossRef]
    [Google Scholar]
  2. Chonan, O., Matsumoto, K. & Watanuki, M. ( 1995; ). Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59, 236–239.[CrossRef]
    [Google Scholar]
  3. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. ( 2008; ). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280 [CrossRef]
    [Google Scholar]
  4. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Saidi, S. M., Liu, S.-L., Hashimoto, Y., Yamamoto, H. & Yabuuchi, E. ( 1990; ). Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 67, 127–130.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 2005; ). phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  8. Hayashi, H., Sakamoto, M. & Benno, Y. ( 2002; ). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46, 535–548.[CrossRef]
    [Google Scholar]
  9. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  10. Hooper, L. V., Wong, M. H., Thelin, A., Hansson, L., Falk, P. G. & Gordon, J. I. ( 2001; ). Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884.[CrossRef]
    [Google Scholar]
  11. Katsuta, A., Adachi, K., Matsuda, S., Shizuri, Y. & Kasai, K. ( 2005; ). Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55, 1851–1855.[CrossRef]
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  14. Kurokawa, K., Itoh, T., Kuwahara, T., Oshima, K., Toh, H., Toyoda, A., Takami, H., Morita, H., Sharma, V. K. & other authors ( 2007; ). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14, 169–181.[CrossRef]
    [Google Scholar]
  15. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  16. Lan, P. T., Sakamoto, M., Sakata, S. & Benno, Y. ( 2006; ). Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 56, 2853–2859.[CrossRef]
    [Google Scholar]
  17. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. ( 2006; ). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.[CrossRef]
    [Google Scholar]
  18. Li, M., Wang, B., Zhang, M., Rantalainen, M., Wang, S., Zhou, H., Zhang, Y., Shen, J., Pang, X. & other authors ( 2008; ). Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105, 2117–2122.[CrossRef]
    [Google Scholar]
  19. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  20. Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. ( 2008; ). Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58, 2716–2720.[CrossRef]
    [Google Scholar]
  21. Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. ( 2009; ). Paraprevotella clara gen. nov., sp. nov., and Paraprevotella xylaniphila sp. nov., new members of the family Prevotellaceae isolated from human faeces. Int J Syst Evol Microbiol 59, 1895–1900.[CrossRef]
    [Google Scholar]
  22. Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. ( 2010; ). Succinatimonas hippei gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 60, 1788–1793.[CrossRef]
    [Google Scholar]
  23. Nagai, F., Morotomi, M., Sakon, H. & Tanaka, R. ( 2009; ). Parasutterella excrementihominis gen. nov., sp. nov., a novel member of the family Alcaligenaceae, isolated from human faeces. Int J Syst Evol Microbiol 59, 1793–1797.[CrossRef]
    [Google Scholar]
  24. Nagai, F., Morotomi, M., Watanabe, Y., Sakon, H. & Tanaka, R. ( 2010; ). Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int J Syst Evol Microbiol 60, 1296–1302.[CrossRef]
    [Google Scholar]
  25. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  26. Pearson, W. R. & Lipman, D. J. ( 1985; ). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef]
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Sakon, H., Nagai, F., Morotomi, M. & Tanaka, R. ( 2008; ). Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58, 970–975.[CrossRef]
    [Google Scholar]
  29. Shah, H. N. ( 1992; ). The genus Bacteroides and related taxa. In The Prokaryotes, 2nd edn, pp. 3593–3607. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  30. Shah, H. N. & Collins, M. D. ( 1983; ). Genus Bacteroides. A chemotaxonomical perspective. J Appl Bacteriol 55, 403–416.[CrossRef]
    [Google Scholar]
  31. Shah, H. N. & Collins, M. D. ( 1989; ). Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39, 85–87.[CrossRef]
    [Google Scholar]
  32. Suau, A., Bonnet, R., Sutren, M., Godon, J. J., Gibson, G. R., Collins, M. D. & Doré, J. ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 4799–4807.
    [Google Scholar]
  33. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  35. Wang, X., Heazlewood, S. P., Krause, D. O. & Florin, T. H. ( 2003; ). Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95, 508–520.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.015107-0
Loading
/content/journal/ijsem/10.1099/ijs.0.015107-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error