1887

Abstract

Monoxenous trypanosomatid sp. nov. was isolated from the digestive tract of the biting midge (Ceratopogonidae, Diptera). This species forms three distinct morphotypes in culture: the microflagellate promastigote, the small promastigote and the long promastigote. The last form is unique for the newly described species. Phylogenetic analyses of SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase genes showed that sp. nov. is the closest relative of , another monoxenous trypanosomatid isolated from biting midges. However, morphological and randomly amplified polymorphic DNA analyses confirmed that sp. nov. is distinct from .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014555-0
2010-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2236.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014555-0&mimeType=html&fmt=ahah

References

  1. Batistoti, M., Cavazzana, M., Jr, Serrano, M. G., Ogatta, S. F., Baccan, G. C., Jankevicius, J. V., Teixeira, M. M. G. & Itow Jankevicius, S. ( 2001; ). Genetic variability of trypanosomatids isolated from phytophagous hemiptera defined by morphological, biochemical, and molecular taxonomic markers. J Parasitol 87, 1335–1341.[CrossRef]
    [Google Scholar]
  2. Bulat, S. A., Mokrousov, I. V. & Podlipaev, S. A. ( 1999; ). Classification of Trypanosomatids from insects and plants by the UP-PCR (universally primed PCR) technique and cross dot blot hybridization of PCR products. Eur J Protistol 35, 319–326.[CrossRef]
    [Google Scholar]
  3. Camargo, E. P., Sbravate, C., Teixeira, M. M. G., Uliana, S. R. B., Soares, M. B. M., Affonso, H. T. & Floeter-Winter, L. ( 1992; ). Ribosomal DNA restriction analysis and synthetic oligonucleotide probing in the identification of genera of lower trypanosomatids. J Parasitol 78, 40–48.[CrossRef]
    [Google Scholar]
  4. Catarino, L. M., Serrano, M. G., Cavazzana, M., Jr, Almeida, M. L., Kaneshina, E. K., Campaner, M., Jankevicius, J. V., Teixeira, M. M. G. & Itow-Jankevicius, S. ( 2001; ). Classification of trypanosomatids from fruits and seeds using morphological, biochemical and molecular markers revealed several genera among fruit isolates. FEMS Microbiol Lett 201, 65–72.[CrossRef]
    [Google Scholar]
  5. Daggett, P. M., Dollahon, N. & Janovy, J., Jr ( 1972; ). Herpetomonas megaseliae sp. n. (Protozoa: trypanosomatidae) from Megaselia scalaris (Loew, 1866) Schmitz, 1929 (Diptera: Phoridae). J Parasitol 58, 946–949.[CrossRef]
    [Google Scholar]
  6. Faria-e-Silva, P. M., Soares, M. J. & De Souza, W. ( 1996; ). Proliferative opisthomastigote forms in Herpetomonas roitmani (Kinetoplastida: Trypanosomatidae). Parasitol Res 82, 125–129.[CrossRef]
    [Google Scholar]
  7. Fiorini, J. E., Takata, C. S. A., Teofilo, V. M., Nascimento, L. C., Faria-e-Silva, P. M., Soares, M. J., Teixeira, M. M. G. & De Souza, W. ( 2001; ). Morphological, biochemical and molecular characterization of Herpetomonas samuelpessoai camargoi n. subsp., a trypanosomatid isolated from the flower of the squash Cucurbita moschata. J Eukaryot Microbiol 48, 62–69.[CrossRef]
    [Google Scholar]
  8. Freymuller, E. & Camargo, E. P. ( 1981; ). Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool 28, 175–182.[CrossRef]
    [Google Scholar]
  9. Frolov, A. O. & Skarlato, S. O. ( 1987; ). Light- and electron microscopical study of Leptomonas pyrrhocoris Z. (Kinetoplastida, Trypanosomatidae). Parazitologiia 21, 3–9 (in Russian with English summary).
    [Google Scholar]
  10. Gadelha, C., Wickstead, B., de Souza, W., Gull, K. & Cunha-e-Silva, N. ( 2005; ). Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot Cell 4, 516–525.[CrossRef]
    [Google Scholar]
  11. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  12. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  13. Hamilton, P. B., Stevens, J. R., Gaunt, M. W., Gidley, J. & Gibson, W. C. ( 2004; ). Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol 34, 1393–1404.[CrossRef]
    [Google Scholar]
  14. Hollar, L., Lukeš, J. & Maslov, D. A. ( 1998; ). Monophyly of endosymbiont containing trypanosomatids: phylogeny versus taxonomy. J Eukaryot Microbiol 45, 293–297.[CrossRef]
    [Google Scholar]
  15. Hughes, A. L. & Piontkivska, H. ( 2003; ). Phylogeny of Trypanosomatidae and Bodonidae (Kinetoplastida) based on 18S rRNA: evidence for paraphyly of Trypanosoma and six other genera. Mol Biol Evol 20, 644–652.[CrossRef]
    [Google Scholar]
  16. Lukeš, J. & Votýpka, J. ( 2000; ). Trypanosoma avium: novel features of the kinetoplast structure. Exp Parasitol 96, 178–181.[CrossRef]
    [Google Scholar]
  17. Manaia, A. C., Souza, M. C. M., Lustosa, É. S. & Roitman, I. ( 1981; ). Leptomonas lactosovorans n. sp., a lactose-utilizing trypanosomatid: description and nutritional requirements. J Eukaryot Microbiol 28, 124–126.
    [Google Scholar]
  18. Marín, C., Fabre, S., Sánchez-Moreno, M. & Dollet, M. ( 2007; ). Herpetomonas spp. isolated from tomato fruits (Lycopersicon esculentum) in southern Spain. Exp Parasitol 116, 88–90.[CrossRef]
    [Google Scholar]
  19. Maslov, D. A. & Simpson, L. ( 1995; ). Evolution of parasitism in kinetoplastid protozoa. Parasitol Today 11, 30–32.[CrossRef]
    [Google Scholar]
  20. Maslov, D. A., Lukeš, J., Jirků, M. & Simpson, L. ( 1996; ). Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 75, 197–205.[CrossRef]
    [Google Scholar]
  21. Maslov, D. A., Podlipaev, S. A. & Lukeš, J. ( 2001; ). Phylogeny of the Kinetoplastida: taxonomic problems and insights into the evolution of parasitism. Mem Inst Oswaldo Cruz 96, 397–402.[CrossRef]
    [Google Scholar]
  22. McGhee, R. B. & Cosgrove, W. B. ( 1980; ). Biology and physiology of the lower Trypanosomatidae. Microbiol Rev 44, 140–173.
    [Google Scholar]
  23. Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. ( 1988; ). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.[CrossRef]
    [Google Scholar]
  24. Merzlyak, E., Yurchenko, V., Kolesnikov, A. A., Alexandrov, K., Podlipaev, S. A. & Maslov, D. A. ( 2001; ). Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia. J Eukaryot Microbiol 48, 161–169.[CrossRef]
    [Google Scholar]
  25. Molyneux, D. ( 1977; ). Vector relationships in the Trypanosomatidae. Adv Parasitol 15, 54–58.
    [Google Scholar]
  26. Momen, H. ( 2001; ). Some current problems in the systematics of trypanosomatids. Int J Parasitol 31, 640–642.[CrossRef]
    [Google Scholar]
  27. Morsy, T. A., Schnur, L. F., Feinsod, F. M., Michael, S. A., Saah, A., Salma, M. M. & Wahba, M. M. ( 1988; ). The discovery and preliminary characterization of a novel trypanosomatid parasite from Rattus norvegicus and stray dogs from Alexandria, Egypt. Ann Trop Med Parasitol 82, 437–444.
    [Google Scholar]
  28. Nunes, L. R., Teixeira, M. M. G., Camargo, E. P. & Affonso, H. T. ( 1994; ). kDNA and rDNA sequences reveal a phylogenetic cluster of species originally placed in different genera of trypanosomatids. J Eukaryot Microbiol 41, 496–500.[CrossRef]
    [Google Scholar]
  29. Pavlíček, A., Hrdá, Š. & Flegr, J. ( 1999; ). FreeTree – freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biol (Praha) 45, 97–99.
    [Google Scholar]
  30. Podlipaev, S. A. ( 1985; ). New species of lower trypanosomatids from Heteroptera families Gerridae and Nabidae: stages of their life cycles in nature and in the laboratory. Proc Zool Inst Leningrad 129, 35–47 (in Russian with English summary).
    [Google Scholar]
  31. Podlipaev, S. A. ( 1990; ). Catalogue of world fauna of Trypanosomatidae (Protozoa). Proc Zool Inst Leningrad 144, 1–178.
    [Google Scholar]
  32. Podlipaev, S. A. ( 2000; ). Insect trypanosomatids: the need to know more. Mem Inst Oswaldo Cruz 95, 517–522.[CrossRef]
    [Google Scholar]
  33. Podlipaev, S. A. ( 2001; ). The more insect trypanosomatids under study – the more diverse Trypanosomatidae appears. Int J Parasitol 31, 648–652.[CrossRef]
    [Google Scholar]
  34. Podlipaev, S. A. ( 2003; ). Host specificity of homoxenous trypanosomatids. Parazitologiia 37, 3–17 (in Russian with English summary).
    [Google Scholar]
  35. Podlipaev, S. A., Sturm, N. R., Fiala, I., Fernandes, O., Westenberger, S. J., Dollet, M., Campbell, D. A. & Lukeš, J. ( 2004a; ). Diversity of insect trypanosomatids assessed from the spliced leader RNA and 5S rRNA genes and intergenic regions. J Eukaryot Microbiol 51, 283–290.[CrossRef]
    [Google Scholar]
  36. Podlipaev, S. A., Votýpka, J., Jirků, M., Svobodová, M. & Lukeš, J. ( 2004b; ). Herpetomonas ztiplika sp. nov. (Kinetoplastida: Trypanosomatidae): a parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae). J Parasitol 90, 342–347.[CrossRef]
    [Google Scholar]
  37. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  38. Rogers, W. E. & Wallace, F. G. ( 1971; ). Two new subspecies of Herpetomonas muscarum (Leidy, 1856) Kent, 1880. J Protozool 18, 645–654.[CrossRef]
    [Google Scholar]
  39. Roitman, I., Brener, Z., Roitman, C. & Kitajima, E. W. ( 1976; ). Demonstration that Leptomonas pessoai Galvão, Oliveira, Carvalho & Veiga, 1970, is a Herpetomonas. J Protozool 23, 291–293.[CrossRef]
    [Google Scholar]
  40. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  41. Santos, A. L. S., Abreu, C. M., Alviano, C. S. & Soares, R. M. A. ( 2005; ). Use of proteolytic enzymes as an addititional tool for trypanosomatid identification. Parasitology 130, 79–88.[CrossRef]
    [Google Scholar]
  42. Stamatakis, A., Hoover, P. & Rougemont, J. ( 2008; ). A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57, 758–771.[CrossRef]
    [Google Scholar]
  43. Stevens, J. R. & Gibson, W. ( 1999; ). The molecular evolution of trypanosomes. Parasitol Today 15, 432–437.[CrossRef]
    [Google Scholar]
  44. Svobodová, M., Zídková, L., Čepička, I., Oborník, M., Lukeš, J. & Votýpka, J. ( 2007; ). Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol 57, 423–432.[CrossRef]
    [Google Scholar]
  45. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  46. Teixeira, M. M. G., Takata, C. S. A., Conchon, I., Campaner, M. & Camargo, E. P. ( 1997; ). Ribosomal and kDNA markers distinguish two subgroups of Herpetomonas among old species and new trypanosomatids isolated from flies. J Parasitol 83, 58–65.[CrossRef]
    [Google Scholar]
  47. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  48. Vickerman, K. ( 1994; ). The evolutionary expansion of the trypanosomatid flagellates. Int J Parasitol 24, 1317–1331.[CrossRef]
    [Google Scholar]
  49. Wallace, F. G. ( 1966; ). The trypanosomatid parasites of insects and arachnids. Exp Parasitol 18, 124–193.[CrossRef]
    [Google Scholar]
  50. Wallace, F. G., Camargo, E. P., McGhee, R. B. & Roitman, I. ( 1983; ). Guidelines for the description of new species of lower trypanosomatids. J Eukaryot Microbiol 30, 308–313.
    [Google Scholar]
  51. Yoshida, N., Freymüller, E. & Wallace, F. G. ( 1978; ). Herpetomonas mariadeanei sp. n. (Protozoa, Trypanosomatidae) from Muscina stabulans (Falléen, 1816) (Diptera, Muscidae). J Eukaryot Microbiol 25, 421–425.
    [Google Scholar]
  52. Yurchenko, V., Lukeš, J., Xu, X. & Maslov, D. A. ( 2006; ). An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 53, 103–111.[CrossRef]
    [Google Scholar]
  53. Yurchenko, V. Y., Lukeš, J., Tesařová, M., Jirků, M. & Maslov, D. A. ( 2008; ). Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist 159, 99–114.[CrossRef]
    [Google Scholar]
  54. Yurchenko, V. Y., Lukeš, J., Jirků, M. & Maslov, D. A. ( 2009; ). Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol 59, 893–909.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014555-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014555-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2236 - 2246

Random amplified polymorphic DNA amplification patterns of sp. nov. isolate CER 9 (1), isolates CER 7 (2), CER 4 (3) and CER 3 (4), and isolates CER 8 (5), CER 6 (6), CER 2 (7) and CER 1 (8). DNA profiles obtained using oligonucleotides OPA-03 (a) and OPD-03 (b). M, 100 bp DNA Ladder Plus (Fermentas).



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error