1887

Abstract

A novel actinobacterium, strain P30, was isolated from jeotgal, a traditional Korean fermented seafood. Cells were aerobic, Gram-positive, non-motile and coccoid. Optimal growth occurred at 30–37 °C, at pH 8–9 and in the presence of 0–2 % (w/v) NaCl. Based on 16S rRNA gene sequence analysis, strain P30 was phylogenetically closely related to , , , , and with levels of similarity of 98.6, 98.2, 98.1, 97.4, 97.3 and 97.3 %, respectively, to the type strains of these species. Levels of DNA–DNA relatedness between strain P30 and the type strains of , , , and were 37, 43, 37, 25 and 17 %, respectively. The predominant menaquinone of strain P30 was MK-7. Major cellular fatty acids were anteiso-C, iso-C and iso-C. The genomic DNA G+C content of strain P30 was 70.2 mol%. Based on these data, strain P30 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P30 (=KCTC 19594=JCM 15914).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014506-0
2010-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/4/914.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014506-0&mimeType=html&fmt=ahah

References

  1. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  2. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  3. Gonzalez, J. M. & Saiz-Jimenez, C. ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4, 770–773.[CrossRef]
    [Google Scholar]
  4. Hiraishi, A., Ueda, Y., Ishihara, J. & Mori, T. ( 1996; ). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42, 457–469.[CrossRef]
    [Google Scholar]
  5. Kim, S. B., Nedashkovskaya, O. I., Mikhailov, V. V., Han, S. K., Kim, K. O., Rhee, M. S. & Bae, K. S. ( 2004; ). Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 54, 1617–1620.[CrossRef]
    [Google Scholar]
  6. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  7. Kluge, A. G. & Farris, J. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  8. Kovacs, G., Burghardt, J., Pradella, S., Schumann, P., Stackebrandt, E. & Màrialigeti, K. ( 1999; ). Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49, 167–173.[CrossRef]
    [Google Scholar]
  9. Li, W.-J., Zhang, Y.-Q., Schumann, P., Chen, H.-H., Hozzein, W. N., Tian, X.-P., Xu, L.-H. & Jiang, C.-L. ( 2006; ). Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 56, 733–737.[CrossRef]
    [Google Scholar]
  10. Mayilraj, S., Kroppenstedt, R. M., Suresh, K. & Saini, H. S. ( 2006; ). Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56, 1971–1975.[CrossRef]
    [Google Scholar]
  11. Park, E. J., Roh, S. W., Kim, M. S., Jung, M. J., Shin, K. S. & Bae, J. W. ( 2010; ). Kocuria koreensis sp. nov. isolated from fermented seafood. Int J Syst Evol Microbiol 60, 140–143.[CrossRef]
    [Google Scholar]
  12. Rainey, F. A., Nobre, M. F., Schumann, P., Stackebrandt, E. & Da Costa, M. S. ( 1997; ). Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47, 510–514.[CrossRef]
    [Google Scholar]
  13. Reddy, G. S. N., Prakash, J. S. S., Prabahar, V., Matsumoto, G. I., Stackebrandt, E. & Shivaji, S. ( 2003; ). Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53, 183–187.[CrossRef]
    [Google Scholar]
  14. Roh, S. W., Sung, Y., Nam, Y. D., Chang, H. W., Kim, K. H., Yoon, J. H., Jeon, C. O., Oh, H. M. & Bae, J. W. ( 2008; ). Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J Microbiol 46, 40–44.[CrossRef]
    [Google Scholar]
  15. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  16. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Seo, Y. B., Kim, D. E., Kim, G. D., Kim, H. W., Nam, S. W., Kim, Y. T. & Lee, J. H. ( 2009; ). Kocuria gwangalliensis sp. nov., a novel actinobacterium isolated from seawater. Int J Syst Evol Microbiol 59, 2769–2772.[CrossRef]
    [Google Scholar]
  19. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  20. Stackebrandt, E., Koch, C., Gvozdiak, O. & Schumann, P. ( 1995; ). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45, 682–692.[CrossRef]
    [Google Scholar]
  21. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  22. Tang, S. K., Wang, Y., Lou, K., Mao, P. H., Xu, L. H., Jiang, C. L., Kim, C. J. & Li, W. J. ( 2009; ). Kocuria halotolerans sp. nov., a novel actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 59, 1316–1320.[CrossRef]
    [Google Scholar]
  23. Tittsler, R. P. & Sandholzer, L. A. ( 1936; ). Use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31, 575–580.
    [Google Scholar]
  24. Tvrzová, L., Schumann, P., Sedlácek, I., Pácová, Z., Spröer, C., Verbarg, S. & Kroppenstedt, R. M. ( 2005; ). Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov. Int J Syst Evol Microbiol 55, 139–142.[CrossRef]
    [Google Scholar]
  25. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  26. Zhou, G., Luo, X., Tang, Y., Zhang, L., Yang, Q., Qio, Y. & Fang, C. ( 2008; ). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol 58, 1304–1307.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014506-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014506-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error