1887

Abstract

A bacterial strain, designated PW21, was isolated from root nodules of in Tunisia. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate into the genus , with its closest relatives being DS-1 and Ch-32 with identity values of 96.9 %. DNA–DNA hybridization measurements showed values of less than 25 % with respect to these two species. The isolate was a Gram-variable, motile and sporulating rod. Catalase activity was positive and oxidase activity was weakly positive. Aesculin, CM-cellulose, xylan and starch were hydrolysed but casein and gelatin were not. Acetoin production was weakly positive and nitrate reduction was negative. Urease production was negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the predominant menaquinone and anteiso-C, iso-C and iso-C were the major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, a glycolipid, six phospholipids, an unidentified lipid and two unknown aminophosphoglycolipids. -Diaminopimelic acid was not detected in the peptidoglycan. The DNA G+C content of the isolate was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PW21 should be considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PW21 (=LMG 25259 =CECT 7506 =DSM 22405).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.014241-0
2010-09-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/9/2182.html?itemId=/content/journal/ijsem/10.1099/ijs.0.014241-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  3. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  4. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872, 174AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by Sneath, P. H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.. Baltimore. : Williams & Wilkins.
    [Google Scholar]
  5. Dafni, A. & Negbi, M. ( 1978; ). Variability in Prosopis farcta in Israel: seed germination as affected by temperature and salinity. Isr J Bot 27, 147–159.
    [Google Scholar]
  6. Dasman, Kajiyama, S., Kawasaki, H., Yagi, M., Seki, T., Fukusaki, E. & Kobayashi, A. ( 2002; ). Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52, 1669–1674.[CrossRef]
    [Google Scholar]
  7. de Lajudie, P., Willems, A., Pot, B., Dewettinck, D., Maestrojuan, G., Neyra, M., Collins, M. D., Dreyfus, B., Kersters, K. & Gillis, M. ( 1994; ). Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov. and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 48, 715–733.
    [Google Scholar]
  8. de Lajudie, P., Willems, A., Nick, G., Moreira, F., Molouba, F., Hoste, B., Torck, U., Neyra, M., Collins, M. D. & other authors ( 1998; ). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48, 369–382.[CrossRef]
    [Google Scholar]
  9. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  10. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1983; ). Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14, 313–333.[CrossRef]
    [Google Scholar]
  12. García-Fraile, P., Velázquez, E., Mateos, P. F., Martínez-Molina, E. & Rivas, R. ( 2008; ). Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 58, 1855–1859.[CrossRef]
    [Google Scholar]
  13. Kämpfer, P., Rosselló-Mora, R., Falsen, E., Busse, H.-J. & Tindall, B. J. ( 2006; ). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56, 781–786.[CrossRef]
    [Google Scholar]
  14. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  15. Lim, J.-M., Jeon, C. O., Park, D.-J., Xu, L.-H., Jiang, C.-L. & Kim, C.-J. ( 2006; ). Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. Int J Syst Evol Microbiol 56, 2579–2582.[CrossRef]
    [Google Scholar]
  16. Logan, N. A. & Berkeley, R. C. W. ( 1984; ). Identification of Bacillus strains using the API system. J Gen Microbiol 130, 1871–1882.
    [Google Scholar]
  17. Mandel, M. & Marmur, J. ( 1968; ). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206.
    [Google Scholar]
  18. Nick, G., de Lajudie, P., Eardly, B. D., Suomalainen, S., Paulin, L., Zhang, X., Gillis, M. & Lindström, K. ( 1999; ). Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49, 1359–1368.[CrossRef]
    [Google Scholar]
  19. Odee, D. W., Haukka, K., McInroy, S. G., Sprent, J. I., Sutherland, J. M. & Young, J. P. W. ( 2002; ). Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34, 801–811.[CrossRef]
    [Google Scholar]
  20. Pottier-Alapetite, G. ( 1979; ). Flore de la Tunisie: Angiospermes-Dicotylédones, Apétales Dialypétales, vol. 1. Tunis. : Publications Scientifiques Tunisiennes. Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l'Agriculture.
    [Google Scholar]
  21. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  22. Rivas, R., Sánchez, M., Trujillo, M. E., Zurdo-Piñeiro, J. L., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2003; ). Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). Int J Syst Evol Microbiol 53, 99–103.[CrossRef]
    [Google Scholar]
  23. Rivas, R., Gutiérrez, C., Abril, A., Mateos, P. F., Martinez-Molina, E., Ventosa, A. & Velázquez, E. ( 2005; ). Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum. Int J Syst Evol Microbiol 55, 1305–1309.[CrossRef]
    [Google Scholar]
  24. Rivas, R., García-Fraile, P., Mateos, P. F., Martínez-Molina, E. & Velázquez, E. ( 2007; ). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 44, 181–187.[CrossRef]
    [Google Scholar]
  25. Rivas, R., García-Fraile, P., Zurdo-Piñeiro, J. L., Mateos, P. F., Martínez-Molina, E., Bedmar, E. J., Sánchez-Raya, J. & Velázquez, E. ( 2008; ). Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int J Syst Evol Microbiol 58, 1850–1854.[CrossRef]
    [Google Scholar]
  26. Saha, P., Krishnamurthi, S., Bhattacharya, A., Sharma, R. & Chakrabarti, T. ( 2010; ). Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 60, 422–428.[CrossRef]
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  30. Tindall, B. J. ( 1990; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  31. Trujillo, M. E., Kroppenstedt, R. M., Schumann, P., Carro, L. & Martínez-Molina, E. ( 2006a; ). Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56, 2381–2385.[CrossRef]
    [Google Scholar]
  32. Trujillo, M. E., Kroppenstedt, R. M., Schumann, P. & Martínez-Molina, E. ( 2006b; ). Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. Int J Syst Evol Microbiol 56, 407–411.[CrossRef]
    [Google Scholar]
  33. Valverde, A., Peix, A., Rivas, R., Velázquez, E., Salazar, S., Santa-Regina, I., Rodríguez-Barrueco, C. & Igual, J. M. ( 2008; ). Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. Int J Syst Evol Microbiol 58, 2560–2564.[CrossRef]
    [Google Scholar]
  34. Vincent, J. M. ( 1970; ). The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of Root-Nodule Bacteria, pp. 1–13. Edited by Vincent, J. M.. Oxford. : Blackwell Scientific.
    [Google Scholar]
  35. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  36. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  37. Yoon, J.-H., Kang, S.-J., Yeo, S.-H. & Oh, T.-K. ( 2005; ). Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55, 2339–2344.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.014241-0
Loading
/content/journal/ijsem/10.1099/ijs.0.014241-0
Loading

Data & Media loading...

. Electron micrographs of strain PW21 grown in TSA for 48 h (a) showing a polar flagellum and for two weeks (b) showing the presence of round spores. Bars, 1 µm.

IMAGE

[ PDF] (31 KB)

PDF

Two-dimensional thin-layer chromatogram of polar lipids of strain PW21 . DPG, Diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PN1 and PN2, unknown aminophospholipids; GL, unknown glycolipids; PL1 to PL6, unknown phospholipids; L1, unknown lipid.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error