1887

Abstract

Strictly anaerobic, mesophilic, sulfate-reducing bacterial strains were isolated from two anaerobic municipal sewage sludge digesters. One representative strain (BSY) was characterized phenotypically and phylogenetically. Cells were Gram-negative, motile by means of a single polar flagellum, non-spore-forming, curved rods. Cells had desulfoviridin and cytochrome type . Catalase and oxidase activities were not detected. The optimum NaCl concentration for growth was 0.5 % (w/v). The optimum temperature was 35 °C and the optimum pH was 7.1. Strain BSY utilized butyrate, 2-methylbutyrate, valerate, pyruvate, lactate, ethanol, 1-propanol, butanol and H as electron donors for sulfate reduction. This strain grew lithoautotrophically with H/CO under sulfate-reducing conditions. Most organic electron donors were incompletely oxidized to mainly acetate, whereas 2-methylbutyrate and valerate were oxidized to equivalent amounts of acetate and propionate. Strain BSY utilized thiosulfate as an electron acceptor, and grew with pyruvate in the absence of electron acceptors. The genomic DNA G+C content of strain BSY was 63.3 mol%. Menaquinone MK-6(H) was the major respiratory quinone. Major cellular fatty acids were C, C, C 7 and C 7. Phylogenetic analyses based on 16S rRNA and dissimilatory sulfite-reductase -subunit gene sequences assigned strain BSY to the genus in the family within the class . Its closest recognized relative based on 16S rRNA gene sequences was the type strain of (95.3 % similarity). On the basis of significant differences in 16S rRNA gene sequences and phenotypic characteristics, the sewage sludge strains are considered to represent a single novel species of the genus , for which the name sp. nov. is proposed. The type strain is BSY (=JCM 15519=DSM 21556).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013771-0
2010-03-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/595.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013771-0&mimeType=html&fmt=ahah

References

  1. Akasaka H., Izawa T., Ueki K., Ueki A. 2003a; Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161 [CrossRef]
    [Google Scholar]
  2. Akasaka H., Ueki A., Hanada S., Kamagata Y., Ueki K. 2003b; Propionicimonas paludicola gen. nov., sp. nov. a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 531991–1998 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Bak F., Pfennig N. 1987; Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189 [CrossRef]
    [Google Scholar]
  5. Balk M., Altinbas M., Rijpstra W. I. C., Damsté J. S. S., Stams A. J. M. 2008; Desulfatirhabdium butyrativorans gen. nov., sp. nov. a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor. Int J Syst Evol Microbiol 58:110–115
    [Google Scholar]
  6. Basso O., Caumette P., Magot M. 2005; Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 55:101–104 [CrossRef]
    [Google Scholar]
  7. Beeder J., Torsvik T., Lien T. 1995; Thermodesulforhabdus norvegicus gen. nov., sp. nov. a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336 [CrossRef]
    [Google Scholar]
  8. Belyakova E. V., Rozanova E. P., Borzenkov I. A., Tourova T. P., Pusheva M. A., Lysenko A. M., Kolganova T. V. 2006 The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen.nov., sp. nov., isolated from an oil field. Microbiology (English translation of Mikrobiologiia ) 75, 201–211.
  9. Blenden D. C., Goldberg H. S. 1965; Silver impregnation stain for Leptospira and flagella. J Bacteriol 89:899–900
    [Google Scholar]
  10. Collins M. D., Widdel F. 1986; Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18 [CrossRef]
    [Google Scholar]
  11. Cravo-Laureau C., Matheron R., Cayol J.-L., Joulian C., Hirschler-Réa A. 2004; Desulfatibacillum aliphaticivorans gen. nov., sp. nov. an n -alkane- and n -alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83
    [Google Scholar]
  12. Daumas S., Cord-Ruwisch R., Garcia J. L. 1988; Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek 54:165–178 [CrossRef]
    [Google Scholar]
  13. Fardeau M.-L., Ollivier B., Patel B. K. C., Dwivedi P., Ragot M., Garcia J.-L. 1995; Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int J Syst Bacteriol 45:218–221 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 2006 phylip (phylogeny inference package), version 3.66. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  15. Hungate R. E. 1966 The Rumen and its Microbes New York: Academic Press;
    [Google Scholar]
  16. Karkhoff-Schweizer R. R., Huber D. P. W., Voordouw G. 1995; Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol 61:290–296
    [Google Scholar]
  17. Kohring L. L., Ringelberg D. B., Devereux R., Stahl D. A., Mittelman M. W., White D. C. 1994; Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 119:303–308 [CrossRef]
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  19. Kuever J., Rainey F. A., Hippe H. 1999; Description of Desulfotomaculum sp. Groll as Desulfotomaculum gibsoniae sp. nov. Int J Syst Bacteriol 49:1801–1808 [CrossRef]
    [Google Scholar]
  20. Kuever J., Rainey F. A., Widdel F. 2005; Class IV. Deltaproteobacteria class nov. In Bergey'sManual of Systematic Bacteriology vol. 2, part C, 2nd edn. pp 922–1144 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  21. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  22. Miyagawa E., Azuma R., Suto E. 1979; Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  23. Moore L. V. H., Bourne D. M., Moore W. E. C. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 44:338–347 [CrossRef]
    [Google Scholar]
  24. Nakamoto M., Ueki A., Ueki K. 1996; Physiological properties of a sulfate-reducing bacterium isolated from municipal sewage sludge and its possible role as a syntrophic acidogen in the ecosystem. J Gen Appl Microbiol 42:109–120 [CrossRef]
    [Google Scholar]
  25. Nanninga H. J., Gottschal J. C. 1987; Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53:802–809
    [Google Scholar]
  26. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans . Nature 183:481–482
    [Google Scholar]
  27. Rabus R., Hansen T., Widdel F. 2000 Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes : an Evolving Electronic Resource for the Microbiological Community , 3rd edn. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  30. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov. a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  31. Sievert S. M., Kuever J. 2000; Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50:1239–1246 [CrossRef]
    [Google Scholar]
  32. Stams A. J. M. 1994; Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294
    [Google Scholar]
  33. Suzuki D., Ueki A., Amaishi A., Ueki K. 2007a; Desulfopila aestuarii gen. nov., sp. nov. a novel, Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57520–526 [CrossRef]
    [Google Scholar]
  34. Suzuki D., Ueki A., Amaishi A., Ueki K. 2007b; Desulfobulbus japonicus sp. nov., a novel, Gram-negative, propionate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 57:849–855 [CrossRef]
    [Google Scholar]
  35. Suzuki D., Ueki A., Amaishi A., Ueki K. 2007c; Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan. J Gen Appl Microbiol 53:119–132 [CrossRef]
    [Google Scholar]
  36. Suzuki D., Ueki A., Amaishi A., Ueki K. 2008; Desulfoluna butyratoxydans gen. nov., sp. nov. a novel, Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 58826–832 [CrossRef]
    [Google Scholar]
  37. Tanaka K., Stackebrandt E., Tohyama S., Eguchi T. 2000; Desulfovirga adipica gen. nov., sp. nov. an adipate-degrading, Gram-negative, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:639–644 [CrossRef]
    [Google Scholar]
  38. Tasaki M., Kamagata Y., Nakamura K., Mikami E. 1991; Isolation and characterization of a thermophilic benzoate-degrading, sulfate-reducing bacterium, Desulfotomaculum thermobenzoicum sp. nov. Arch Microbiol 155:348–352
    [Google Scholar]
  39. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  40. Ueki A., Suto T. 1979; Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25:185–196
    [Google Scholar]
  41. Ueki A., Minato H., Azuma R., Suto T. 1980; Enumeration and isolation of anaerobic bacteria in sewage digester fluids: enumeration of sulfate-reducers by the anaerobic roll tube method. J Gen Appl Microbiol 26:25–35 [CrossRef]
    [Google Scholar]
  42. Ueki A., Matsuda K., Ohtsuki C. 1986; Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32:111–123 [CrossRef]
    [Google Scholar]
  43. Vainshtein M. B., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol 15:554–566 [CrossRef]
    [Google Scholar]
  44. Vandieken V., Knoblauch C., Jørgensen B. B. 2006; Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Int J Syst Evol Microbiol 56:687–690
    [Google Scholar]
  45. Wagner M., Roger A. J., Flax J. L., Brusseau G. A., Stahl D. A. 1998; Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982
    [Google Scholar]
  46. Watanabe K., Watanabe K., Kodama Y., Syutsubo K., Harayama S. 2000; Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude-oil-storage cavities. Appl Environ Microbiol 66:4803–4809 [CrossRef]
    [Google Scholar]
  47. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  48. Widdel F., Kohring G. W., Mayer F. 1983; Studies of dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen.nov. and sp. nov. and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  49. Zhang C., Liu X., Dong X. 2004; Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.013771-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013771-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error