1887

Abstract

A novel halophilic archaeon, strain MH1-52-1, was isolated from solar salt imported from Australia. Cells were pleomorphic, non-motile and Gram-negative. Strain MH1-52-1 required at least 3.0 M NaCl and 1 mM Mg for growth. Strain MH1-52-1 was able to grow at pH 4.0–6.0 (optimum, pH 4.4–4.5) and 15–45 °C (optimum, 37 °C). The diether phospholipids phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, derived from both CC and CC archaeol, were present. Four unidentified glycolipids were also detected. The 16S rRNA gene sequence showed the highest similarity to that of A1 (91.7 %); there were lower levels of similarity to other members of the family . The G+C content of its DNA was 61.4 mol%. Based on our phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate should be classified as a representative of a new genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is MH1-52-1 (=JCM 16109 =DSM 22442 =CECT 7534).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.013722-0
2010-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/11/2513.html?itemId=/content/journal/ijsem/10.1099/ijs.0.013722-0&mimeType=html&fmt=ahah

References

  1. Cline, S. W., Schalkwyk, L. C. & Doolittle, W. F. ( 1989; ). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171, 4987–4991.
    [Google Scholar]
  2. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 2002; ). phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  4. Fukushima, T., Usami, R. & Kamekura, M. ( 2007; ). A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5 % salt solution. Saline Syst 3, 2.[CrossRef]
    [Google Scholar]
  5. Goh, F., Leuko, S., Allen, M. A., Bowman, J. P., Kamekura, M., Neilan, B. A. & Burns, B. P. ( 2006; ). Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56, 1323–1329.[CrossRef]
    [Google Scholar]
  6. Johnson, D. B. ( 2007; ). Physiology and ecology of acidophilic microorganisms. In Physiology and Biochemistry of Extremophiles, pp. 257–270. Edited by Gerday, C. & Glansdorff, N.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  7. Kamekura, M. ( 1993; ). Lipids of extreme halophiles. In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland, R. H. & Hochstein, L. I.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  8. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  9. Lipman, D. J. & Pearson, W. R. ( 1985; ). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef]
    [Google Scholar]
  10. Minegishi, H., Mizuki, T., Echigo, A., Fukushima, T., Kamekura, M. & Usami, R. ( 2008; ). Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4, 16.[CrossRef]
    [Google Scholar]
  11. Miyazaki, S., Sugawara, H., Gojobori, T. & Tateno, Y. ( 2003; ). DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31, 13–16.[CrossRef]
    [Google Scholar]
  12. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  13. Oren, A., Arahal, D. R. & Ventosa, A. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59, 637–642.[CrossRef]
    [Google Scholar]
  14. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  15. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  16. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57, 19–24.[CrossRef]
    [Google Scholar]
  17. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2008; ). Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58, 856–860.[CrossRef]
    [Google Scholar]
  18. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt, P.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  19. Stamatakis, A., Ludwig, T. & Meier, H. ( 2005; ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463.[CrossRef]
    [Google Scholar]
  20. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  21. Wang, Q.-F., Li, W., Yang, H., Liu, Y.-L., Cao, H.-H., Dornmayr-Pfaffenhuemer, M., Stan-Lotter, H. & Guo, G.-Q. ( 2007; ). Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. Int J Syst Evol Microbiol 57, 600–604.[CrossRef]
    [Google Scholar]
  22. Yachai, M., Tanasupawat, S., Itoh, T., Benjakul, S., Visessanguan, W. & Valyasevi, R. ( 2008; ). Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 58, 2136–2140.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.013722-0
Loading
/content/journal/ijsem/10.1099/ijs.0.013722-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2513 - 2516

Effect of pH on growth of strain MH1-52-1 in modified MH1 medium with 100 mM citrate buffer.

Thin-layer chromatogram of polar lipids extracted from strain MH1-52-1 and some related haloarchaea.

Maximum-likelihood tree showing phylogenetic relationships of strain MH1-52-1 and related haloarchaeal strains based on 16S rRNA gene sequences.

[PDF file of Supplementary Figures](72 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error