1887

Abstract

Five Gram-type-positive, aerobic, rod-shaped, non-motile strains of (DCY 17, Ms1, Ms2, Ms3 and Ms4) were isolated from soil from a ginseng field in Daejeon, South Korea. On the basis of 16S rRNA gene sequence similarity, these strains were shown to be related to DSM 8609 (96.1 %), DSM 16914 (96.0 %), JS54-2 (95.6 %), DS-66 (95.5 %), IFO 14548 (95.5 %) and DSM 8611 (95.4 %). Chemotaxonomic data revealed that the type strain, DCY 17, possesses menaquinones MK-12, MK-11 and MK-13 and the predominant fatty acids C anteiso (32.5 %), C iso (27.5 %), C iso (17.0 %), C anteiso (13.2 %), C iso (6.1 %) and C iso (2.1 %). The DNA G+C content of strain DCY 17 is 70.2 mol% and those of strains Ms1 to Ms4 are in the range 68.9–73.5 mol%. The physiological and biochemical tests suggested that these strains represent a novel species. Based on these data, DCY 17 (=KCTC 19237 =LMG 24010) is classified as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012526-0
2010-03-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/478.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012526-0&mimeType=html&fmt=ahah

References

  1. Buck, J. D. ( 1982; ). Nonstaining (KOH)method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  2. Cappuccino, J. G. & Sherman, N. ( 2002; ). Microbiology: a Laboratory Manual, 6th edn. Menlo Park, CA:Pearson Education/Benjamin Cummings.
  3. Collins, M. D. & Jones, D. ( 1981; ).Distribution of isoprenoid quinone structural types in bacteria and theirtaxonomic implications. Microbiol Rev 45, 316–354.
    [Google Scholar]
  4. Collins, M. D., Jones, D. & Kroppenstedt, R. M. ( 1983; ). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb.nov. and Microbacterium laevaniformans nom. rev., comb. nov. Syst Appl Microbiol 4, 65–78.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridizationin microdilution wells as an alternative to membrane filter hybridizationin which radioisotopes are used to determine genetic relatedness among bacterialstrains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1985; ). Confidence limitson phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  7. Hall, T. A. ( 1999; ). BioEdit: a user-friendlybiological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  8. Kim, K. K., Park, H. Y., Park, W. S., Kim, I. S. & Lee,S. T. ( 2005a; ). Microbacterium xylanilyticumsp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 55, 2075–2079.[CrossRef]
    [Google Scholar]
  9. Kim, M. K., Im, W.-T., Ohta, H., Lee, M. & Lee, S.-T. ( 2005b; ). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43, 152–157.
    [Google Scholar]
  10. Kim, K. K., Lee, K. C., Oh, H. M. & Lee, J. S. ( 2008; ). Microbacterium aquimaris sp. nov., isolated fromseawater. Int J Syst Evol Microbiol 58, 1616–1620.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1983; ). The Neutral Theoryof Molecular Evolution. Cambridge: Cambridge University Press.
  12. Komagata, K. & Suzuki, K. ( 1987; ).Lipid and cell-wall analysis in bacterial systematics. MethodsMicrobiol 19, 161–207.
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary geneticsanalysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleicacid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  15. Minnikin, D. E., Patel, P. V., Alshamaony, L. & Goodfellow,M. ( 1977; ). Polar lipid composition in the classificationof Nocardia and related bacteria. Int J Syst Bacteriol 27, 104–117.[CrossRef]
    [Google Scholar]
  16. Orla-Jensen, S. ( 1919; ). The LacticAcid Bacteria. Copenhagen: Høst & Sons.
  17. Saitou, N. & Nei, M. ( 1987; ). Theneighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Sasser, M. ( 1990; ). Identificationof bacteria by gas chromatography of cellular fatty acids. MIDI TechnicalNote 101. Newark, DE: MIDI Inc.
  19. Shin, Y. K., Lee, J.-S., Chun, C. O., Kim, H.-J. & Park,Y.-H. ( 1996; ). Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J MicrobiolBiotechnol 6, 68–69.
    [Google Scholar]
  20. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layerchromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  21. Takeuchi, M. & Hatano, K. ( 1998a; ).Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48, 739–747.[CrossRef]
    [Google Scholar]
  22. Takeuchi, M. & Hatano, K. ( 1998b; ).Proposal of six new species in the genus Microbacterium and transferof Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48, 973–982.[CrossRef]
    [Google Scholar]
  23. Tamaoka, J. & Komagata, K. ( 1984; ).Determination of DNA base composition by reversed phase high-performance liquidchromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. &Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignmentaided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  25. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane,D. J. ( 1991; ). 16S ribosomal DNA amplification forphylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  26. Yokota, A., Takeuchi, M., Sakane, T. & Weiss, N. ( 1993; ). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski tothe genus Aureobacterium as Aureobacterium esteraromaticumcomb. nov. Int J Syst Bacteriol 43, 555–564.[CrossRef]
    [Google Scholar]
  27. Zlamala, C., Schumann, P., Kämpfer, P., Valens, M., Rosselló-Mora,R., Lubitz, W. & Busse, H.-J. ( 2002; ). Microbacteriumaerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’in Vienna. Int J Syst Evol Microbiol 52, 1229–1234.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012526-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012526-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 478 - 483

Cellular fatty acid profiles of sp. nov. DCY 17 and type strains of related species.

DNA–DNA relatedness between strains of sp. nov.

[PDF file of Supplementary Tables](48 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error