1887

Abstract

A moderately thermophilic chemoheterotrophic bacterium, strain Mat9-16, was isolated from microbial mats developed in hot spring water streams from Yumata, Nagano, Japan. Cells of strain Mat9-16 were strictly anaerobic, Gram-stain-negative, non-sporulating, non-motile and short to long rods (2.0–15.5 μm in length). Strain Mat9-16 grew fermentatively with optimum growth at 45 °C, pH 7.0–7.5 and 1 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene revealed that strain Mat9-16 was affiliated with an uncultivated lineage, and the nearest cultivated neighbours were green sulfur bacteria belonging to the class with 77–83 % sequence similarity. However, strain Mat9-16 could not grow phototrophically and did not possess light-harvesting structures, morphologically and genetically, such as the chlorosomes of green sulfur bacteria. On the basis of phenotypic features and phylogenetic position, a novel genus and species are proposed for strain Mat9-16, to be named gen. nov., sp. nov. (=NBRC 101810 =DSM 19864). We also propose to place the cultivated bacterial lineage accommodating the sole representative Mat9-16 in a novel class, classis nov. In addition, we present a formal description of the phylum-level taxon as phyl. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.012484-0
2010-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/6/1376.html?itemId=/content/journal/ijsem/10.1099/ijs.0.012484-0&mimeType=html&fmt=ahah

References

  1. Abulencia, C. B., Wyborski, D. L., Garcia, J. A., Podar, M., Chen, W., Chang, S. H., Chang, H. W., Watson, D., Brodie, E. L. & other authors ( 2006; ). Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72, 3291–3301.[CrossRef]
    [Google Scholar]
  2. Adachi, J. & Hasegawa, M. ( 1995; ). Improved dating of the human chimpanzee separation in the mitochondrial-DNA tree: heterogeneity among amino-acid sites. J Mol Evol 40, 622–628.[CrossRef]
    [Google Scholar]
  3. Alexander, B., Andersen, J. H., Cox, R. P. & Imhoff, J. F. ( 2002; ). Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein. Arch Microbiol 178, 131–140.[CrossRef]
    [Google Scholar]
  4. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  5. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J. & Weightman, A. J. ( 2006; ). New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72, 5734–5741.[CrossRef]
    [Google Scholar]
  6. Barns, S. M., Fundyga, R. E., Jeffries, M. W. & Pace, N. R. ( 1994; ). Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci U S A 91, 1609–1613.[CrossRef]
    [Google Scholar]
  7. Campbell, B. J., Stein, J. L. & Cary, S. C. ( 2003; ). Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69, 5070–5078.[CrossRef]
    [Google Scholar]
  8. Cavalier-Smith, T. ( 2002; ). The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52, 7–76.
    [Google Scholar]
  9. Dojka, M. A., Harris, J. K. & Pace, N. R. ( 2000; ). Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl Environ Microbiol 66, 1617–1621.[CrossRef]
    [Google Scholar]
  10. Elshahed, M. S., Senko, J. M., Najar, F. Z., Kenton, S. M., Roe, B. A., Dewers, T. A., Spear, J. R. & Krumholz, L. R. ( 2003; ). Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69, 5609–5621.[CrossRef]
    [Google Scholar]
  11. Figueras, J. B., Cox, R. P., Højrup, P., Permentier, H. P. & Miller, M. ( 2002; ). Phylogeny of the PscB reaction center protein from green sulfur bacteria. Photosynth Res 71, 155–164.[CrossRef]
    [Google Scholar]
  12. Garcia-Gil, L. J., Gich, F. B. & Fuentes-Garcia, X. ( 2003; ). A comparative study of bchG from green photosynthetic bacteria. Arch Microbiol 179, 108–115.
    [Google Scholar]
  13. Garrity, G. M. & Holt, J. G. ( 2001; ). Phylum BXI. Chlorobi phy. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, p. 601–623. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  14. Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K. ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52, 187–193.
    [Google Scholar]
  15. Hasegawa, M., Kishino, H. & Yano, T. A. ( 1985; ). Dating of the human ape splitting by a molecular clock of mitochondrial-DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  16. Hiraishi, A., Umezawa, T., Yamamoto, H., Kato, K. & Maki, Y. ( 1999; ). Changes in quinone profiles of hot spring microbial mats with a thermal gradient. Appl Environ Microbiol 65, 198–205.
    [Google Scholar]
  17. Hiraishi, A., Kaiya, S., Miyakoda, H. & Futamata, H. ( 2005; ). Biotransformation of polychlorinated dioxins and microbial community dynamics in sediment microcosms at different contamination levels. Microbes Environ 20, 227–242.[CrossRef]
    [Google Scholar]
  18. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  19. Hugenholtz, P. ( 2002; ). Exploring prokaryotic diversity in the genomic era. Genome Biol 3, REVIEWS0003
    [Google Scholar]
  20. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R. ( 1998; ). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376.
    [Google Scholar]
  21. Iino, T., Mori, K., Tanaka, K., Suzuki, K. & Harayama, S. ( 2007; ). Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 57, 1840–1845.[CrossRef]
    [Google Scholar]
  22. Iino, T., Nakagawa, K., Mori, K., Harayama, S. & Suzuki, K. ( 2008; ). Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a hot spring in Japan. Int J Syst Evol Microbiol 58, 1675–1679.[CrossRef]
    [Google Scholar]
  23. Iino, T., Suzuki, K. & Harayama, S. ( 2009; ). Lacticigenium naphtae gen. nov., sp. nov., a novel halotolerant and motile lactic acid bacterium isolated from crude oil. Int J Syst Evol Microbiol 59, 775–780.[CrossRef]
    [Google Scholar]
  24. Itoh, T., Suzuki, K. & Nakase, T. ( 2002; ). Vulcanisaeta distributa gen. nov., sp. nov., and Vulucanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52, 1097–1104.[CrossRef]
    [Google Scholar]
  25. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  26. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  27. Mori, K., Kim, H., Kakegawa, T. & Hanada, S. ( 2003; ). A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov. Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7, 283–290.[CrossRef]
    [Google Scholar]
  28. Mori, K., Sunamura, M., Yanagawa, K., Ishibashi, J., Miyoshi, Y., Iino, T., Suzuki, K. & Urabe, T. ( 2008; ). First cultivation and ecological investigation of a bacterium affiliated with the candidate phylum OP5 from hot springs. Appl Environ Microbiol 74, 6223–6229.[CrossRef]
    [Google Scholar]
  29. Nakagawa, T. & Fukui, M. ( 2002; ). Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient. J Gen Appl Microbiol 48, 211–222.[CrossRef]
    [Google Scholar]
  30. Nakagawa, T. & Fukui, M. ( 2003; ). Molecular characterization of community structures and sulfur metabolism within microbial streamers in Japanese hot springs. Appl Environ Microbiol 69, 7044–7057.[CrossRef]
    [Google Scholar]
  31. Olsen, G. J., Lane, D. J., Giovannoni, S. J., Pace, N. R. & Stahl, D. A. ( 1986; ). Microbial ecology and evolution; a ribosomal RNA approach. Annu Rev Microbiol 40, 337–365.[CrossRef]
    [Google Scholar]
  32. Pace, N. R., Stahl, D. A., Lane, D. J. & Olsen, G. J. ( 1986; ). The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9, 1–55.
    [Google Scholar]
  33. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  34. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  35. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  36. Sekiguchi, Y., Yamada, T., Hanada, S., Ohashi, A., Harada, H. & Kamagata, Y. ( 2003; ). Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53, 1843–1851.[CrossRef]
    [Google Scholar]
  37. Swofford, D. L. ( 1998; ). Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates.
  38. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  39. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  40. Ward, D. M., Weller, R. & Bateson, M. M. ( 1990; ). 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65.[CrossRef]
    [Google Scholar]
  41. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  42. Yamamoto, H., Hiraishi, A., Kato, K., Chiura, H. X., Maki, Y. & Shimizu, A. ( 1998; ). Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64, 1680–1687.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.012484-0
Loading
/content/journal/ijsem/10.1099/ijs.0.012484-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error