1887

Abstract

A yellow-coloured bacterium, T41, was isolated from a soil sample of a subtropical rainforest in Nepal. Cells were Gram-reaction-positive, aerobic, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a cluster with , , , , , and in the phylum . The strain showed the highest sequence similarity to the type strain of (93.2 %). The major isoprenoid quinone was MK-7 and the predominant cellular fatty acids (>10 %) were iso-15 : 0 (33.8 %), iso-15 : 1 G (13.3 %) and iso-17 : 0 3-OH (12.9 %). The DNA G+C content was 48.1 mol%. On the basis of phenotypic and phylogenetic data and genomic distinctiveness, strain T41 represents a novel species in a new genus in the phylum , for which the name gen. nov., sp. nov. is proposed. The type strain of is strain T41 (=CGMCC 1.7723 =NBRC 106054).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011957-0
2010-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1609.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011957-0&mimeType=html&fmt=ahah

References

  1. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  2. Collins, M. D. ( 1985; ). Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  3. De Ley, J. ( 1970; ). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101, 737–754.
    [Google Scholar]
  4. Di Cello, F., Bevivino, A., Chiarini, L., Fani, R., Paffetti, D., Tabacchioni, S. & Dalmastri, C. ( 1997; ). Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63, 4485–4493.
    [Google Scholar]
  5. Dong, X. Z. & Cai, M. Y. ( 2001; ). General Bacterial Identification System Handbook, pp. 377–385. Beijing: Scientific Press.
  6. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  7. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  8. Güssow, D. & Clackson, T. ( 1989; ). Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res 17, 4000 [CrossRef]
    [Google Scholar]
  9. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  10. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  11. MIDI ( 1999; ). Sherlock Microbial Identification System, Operating Manual, version 3.0. Newark, DE: MIDI, Inc.
  12. Rzhetsky, A. & Nei, M. ( 1992; ). A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9, 945–967.
    [Google Scholar]
  13. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  14. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  15. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  16. Weon, H.-Y., Kim, B.-Y., Yoo, S.-H., Lee, S.-Y., Kwon, S.-W., Go, S.-J. & Stackebrandt, E. ( 2006; ). Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 56, 1777–1782.[CrossRef]
    [Google Scholar]
  17. Weon, H.-Y., Kim, B.-Y., Joa, J.-H., Kwon, S.-W., Kim, W.-G. & Koo, B.-G. ( 2008; ). Niabella soli sp. nov., isolated from soil from Jeju Island, Korea. Int J Syst Evol Microbiol 58, 467–469.[CrossRef]
    [Google Scholar]
  18. Xie, C. H. & Yokota, A. ( 2006; ). Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 56, 1117–1121.[CrossRef]
    [Google Scholar]
  19. Yoon, M. H. & Im, W. T. ( 2007; ). Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 57, 1834–1839.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011957-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011957-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1609 - 1612

Maximum-parsimony (Fig. S1) and minimum-evolution (Fig. S2) phylogenetic trees based on the 16S rRNA gene sequences of strain T41 and related species. [PDF](44 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error