1887

Abstract

An obligately anaerobic, xylanolytic, extremely thermophilic bacterium, strain JW/HY-331, was isolated from sheep faeces collected from a farm at the University of Georgia, USA. Cells of strain JW/HY-331 stained Gram-positive and were catalase-negative, non-motile rods. Single terminal endospores (0.4–0.6 μm in diameter) swelled the mother cell. Growth ranges were 44–77 °C (optimum 70 °C at pH 7.2) and pH 5.9–8.6 (optimum 7.2 at 70 °C). Salt tolerance was 0–2.0 % (w/v) NaCl. No growth was observed at or below 42 °C or at or above 79 °C or at pH 5.7 and below or 8.9 and above. In the presence of 0.3 % yeast extract and 0.1 % tryptone, strain JW/HY-331 utilized xylose, glucose, galactose, cellobiose, raffinose and xylan as carbon and energy sources, but not dextran, soluble potato starch, CM-cellulose, cellulose powder, casein or Casamino acids. Fermentation products from glucose were lactate, acetate, ethanol, CO and H. The G+C content of the genomic DNA was 45.4 mol% (HPLC). Major cellular fatty acids were iso-C, iso-C and anteiso-C. No respiratory quinones were detected. The cell-wall structure was a single layer (Gram-type positive) of the peptidoglycan type A1; the cell-wall sugars were galactose and mannose. Based on 16S rRNA gene sequence analysis, ‘’ HKU16 (85.4 % similarity), ATCC 43204 (84.2 %) and MV1087 (83.4 %) were the closest relatives, but they were only distantly related to strain JW/HY-331. On the basis of physiological, chemotaxonomic and phylogenetic data, isolate JW/HY-331 (=DSM 21659 =ATCC BAA-1711) is proposed as the type strain of gen. nov., sp. nov., placed in fam. nov. within the order of the phylum .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011379-0
2010-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/1/67.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011379-0&mimeType=html&fmt=ahah

References

  1. Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C. ( 1985; ). Phospholipid, ester-linked fatty-acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31, 147–158.[CrossRef]
    [Google Scholar]
  2. Hobel, C. F. V., Marteinsson, V. T., Hauksdottir, S., Fridjonsson, O. H., Skirnisdottir, S., Hreggvidsson, G. O. & Kristjansson, J. K. ( 2004; ). Use of low nutrient enrichments to access novel amylase genes in silent diversity of thermophiles. World J Microbiol Biotechnol 20, 801–809.[CrossRef]
    [Google Scholar]
  3. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  4. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  5. Lau, S. K. P., McNabb, A., Woo, G. K. S., Hoang, L., Fung, A. M. Y., Chung, L. M. W., Woo, P. C. Y. & Yuen, K. Y. ( 2007; ). Catabacter hongkongensis gen. nov., sp. nov., isolated from blood cultures of patients from Hong Kong and Canada. J Clin Microbiol 45, 395–401.[CrossRef]
    [Google Scholar]
  6. Ljungdahl, L. G. & Wiegel, J. ( 1986; ). Anaerobic fermentations. In Manual of Industrial Microbiology and Biotechnology, pp. 84–96. Edited by A. L. Demain & N. A. Solomon. Washington, DC: American Society for Microbiology.
  7. MacKenzie, S. L. ( 1987; ). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70, 151–160.
    [Google Scholar]
  8. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  9. Patel, B. K. C., Monk, C., Littleworth, H., Morgan, H. W. & Daniel, R. M. ( 1987; ). Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int J Syst Bacteriol 37, 123–126.[CrossRef]
    [Google Scholar]
  10. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  11. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  12. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  13. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  14. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  15. Tindall, B. J. ( 1990a; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  16. Tindall, B. J. ( 1990b; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  17. Wagner, I. D. & Wiegel, J. ( 2008; ). Diversity of thermophilic anaerobes. In Incredible Anaerobes: from Physiology to Genomics to Fuels, pp. 1–43. Oxford: Blackwell.
  18. Wery, N., Moricet, J. M., Cueff, V., Jean, J., Pignet, P., Lesongeur, F., Cambon-Bonavita, M. A. & Barbier, G. ( 2001; ). Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51, 1789–1796.[CrossRef]
    [Google Scholar]
  19. Wiegel, J. ( 1998; ). Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2, 257–267.[CrossRef]
    [Google Scholar]
  20. Yokoyama, H., Waki, M., Moriya, N., Yasuda, T., Tanaka, Y. & Haga, K. ( 2007a; ). Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74, 474–483.[CrossRef]
    [Google Scholar]
  21. Yokoyama, H., Moriya, N., Ohmori, H., Waki, M., Ogino, A. & Tanaka, Y. ( 2007b; ). Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. Appl Microbiol Biotechnol 77, 213–222.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011379-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011379-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error