1887

Abstract

A hyperthermophilic, anaerobic, dissimilatory Fe(III)-reducing, facultatively chemolithoautotrophic archaeon (strain SBH6) was isolated from a hydrothermal sample collected from the deepest of the known World Ocean hydrothermal fields, Ashadze field (1 ° 58′ 21″ N 4 ° 51′ 47″ W) on the Mid-Atlantic Ridge, at a depth of 4100 m. The strain was enriched using acetate as the electron donor and Fe(III) oxide as the electron acceptor. Cells of strain SBH6 were irregular cocci, 0.3–0.5 μm in diameter. The temperature range for growth was 50–85 °C, with an optimum at 81 °C. The pH range for growth was 5.0–7.5, with an optimum at pH 6.8. Growth of SBH6 was observed at NaCl concentrations ranging from 1 to 6  % (w/v) with an optimum at 2.5 % (w/v). The isolate utilized acetate, formate, pyruvate, fumarate, malate, propionate, butyrate, succinate, glycerol, stearate, palmitate, peptone and yeast extract as electron donors for Fe(III) reduction. It was also capable of growth with H as the sole electron donor, CO as a carbon source and Fe(III) as an electron acceptor without the need for organic substances. Fe(III) [in the form of poorly crystalline Fe(III) oxide or Fe(III) citrate] was the only electron acceptor that supported growth. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was 234 (97.0 %). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is SBH6 (=DSM 21716 =VKM B-2522).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.011080-0
2009-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2880.html?itemId=/content/journal/ijsem/10.1099/ijs.0.011080-0&mimeType=html&fmt=ahah

References

  1. Casamayor, E. O., Massana, R., Benlloch, S., Øvreas, L., Diez, B., Goddard, V. J., Gasol, J. M., Joint, I., Rodriguez-Valera, F. & Pedrós-Alio, C. ( 2002; ). Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4, 338–438.[CrossRef]
    [Google Scholar]
  2. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M. ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  3. Hungate, R. E. ( 1969; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  4. Judicial Commission of the International Committee for Systematics of Prokaryotes ( 2008; ). Status of strains that contravene Rules 27 (3) and 30 of the International Code of Nomenclature of Bacteria. Opinion 81. Int J Syst Evol Microbiol 58, 1755–1763.[CrossRef]
    [Google Scholar]
  5. Kashefi, K., Tor, J. M., Holmes, D. E., Gaw Van Praagh, C. V., Reysenbach, A. L. & Lovley, D. R. ( 2002; ). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron accepter. Int J Syst Evol Microbiol 52, 719–728.[CrossRef]
    [Google Scholar]
  6. Kashefi, K., Holmes, D. E., Barros, J. A. & Lovley, D. R. ( 2003; ). Thermophily in the Geobacteraceae: Geothermobacter erlichii gen. nov., sp. nov., a novel member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69, 2985–2993.[CrossRef]
    [Google Scholar]
  7. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  8. Lovley, D. R. & Phillips, E. J. P. ( 1988; ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.
    [Google Scholar]
  9. Miroshnichenko, M. L., Slobodkin, A. I., Kostrikina, N. A., L'Haridon, S., Nercessian, O., Spring, S., Stackebrandt, E., Bonch-Osmolovskaya, E. A. & Jeanthon, C. ( 2003; ). Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53, 1637–1641.[CrossRef]
    [Google Scholar]
  10. Muyzer, G., De Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  11. Muyzer, G., Brinkhoff, T., Nubel, U., Santegoeds, C., Schafer, H. & Wawer, C. ( 1997; ). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Molecular Microbial Ecology Manual, chapter 3.4.4, pp. 1–27. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer Academic.
  12. Reysenbach, A. L., Liu, Y., Banta, A. B., Beveridge, T. J., Kirshtein, J. D., Schouten, S., Tivey, M. K., Von Damm, K. & Voytek, M. A. ( 2006; ). A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442, 444–447.[CrossRef]
    [Google Scholar]
  13. Slobodkin, A. I., Tourova, T. P., Kuznetsov, B. B., Kostrikina, N. A., Chernyh, N. A. & Bonch-Osmolovskaya, E. A. ( 1999a; ). Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing anaerobic thermophilic bacterium. Int J Syst Bacteriol 49, 1471–1478.[CrossRef]
    [Google Scholar]
  14. Slobodkin, A. I., Zavarzina, D. G., Sokolova, T. G. & Bonch-Osmolovskaya, E. A. ( 1999b; ). Dissimilatory reduction of inorganic electron acceptors by thermophilic anaerobic prokaryotes. Microbiology (English translation of Mikrobiologiia) 68, 522–542.
    [Google Scholar]
  15. Slobodkin, A., Campbell, B., Cary, S. C., Bonch-Osmolovskaya, E. A. & Jeanthon, C. ( 2001; ). Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 1 °N (East Pacific Rise). FEMS Microbiol Ecol 36, 235–243.
    [Google Scholar]
  16. Tor, J. M., Kashefi, K. & Lovley, D. R. ( 2001; ). Acetate oxidation coupled to Fe(III) reduction in hyperthermophilic microorganisms. Appl Environ Microbiol 67, 1363–1365.[CrossRef]
    [Google Scholar]
  17. Woese, C. R., Achenbach, L., Rouvière, P. & Mandelco, L. ( 1991; ). Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14, 364–371.[CrossRef]
    [Google Scholar]
  18. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I. ( 2002; ). Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic anaerobic endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.011080-0
Loading
/content/journal/ijsem/10.1099/ijs.0.011080-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error