1887

Abstract

An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32, was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the -specific citrate synthase () mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus and shared 92–98 % 16S rRNA gene and 75–81 % gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Rf4, according to 16S rRNA gene sequence similarity, strain FRC-32 showed a DNA–DNA relatedness value of 21 %. Cells of strain FRC-32 were Gram-negative, non-spore-forming, curved rods, 1.0–1.5 μm long and 0.3–0.5 μm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus . The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 °C and pH 6.7–7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the group, strain FRC-32 conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32 was metabolically versatile and, unlike its closest relative, , was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with fumarate as the electron acceptor. Thus, based on genotypic, phylogenetic and phenotypic differences, strain FRC-32 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FRC-32 (=DSM 22248=JCM 15807).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010843-0
2010-03-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/546.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010843-0&mimeType=html&fmt=ahah

References

  1. Abdelouas, A., Lutze, W. & Nuttall, H. E. ( 1999; ). Uranium contamination in the subsurface; characterizationand remediation. Rev Mineral Geochem 38, 433–473.
    [Google Scholar]
  2. Adékambi, T., Shinnick, T. M., Raoult, D. & Drancourt,M. ( 2008; ). Complete rpoB gene sequencingas a suitable supplement to DNA-DNA hybridization for bacterial species andgenus delineation. Int J Syst Evol Microbiol 58, 1807–1814.[CrossRef]
    [Google Scholar]
  3. Akob, D. M., Mills, H. J., Gihring, T. M., Kerkhof, L., Stucki,J. W., Anastacio, A. S., Chin, K. J., Kusel, K., Palumbo, A. V. & otherauthors ( 2008; ). Functional diversity and electrondonor dependence of microbial populations capable of U(VI) reductionin radionuclide-contaminated subsurface sediments. Appl EnvironMicrobiol 74, 3159–3170.
    [Google Scholar]
  4. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J.,Zhang, Z. & Miller, W. ( 1997; ). Gapped blast and psi-blast: a new generation of protein databasesearch programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  5. Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C.T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R. &other authors ( 2003; ). Stimulating the in situ activityof Geobacter species to remove uranium from the groundwater of auranium-contaminated aquifer. Appl Environ Microbiol 69, 5884–5891.[CrossRef]
    [Google Scholar]
  6. Canfield, D. E., Thamdrup, B. & Kristensen, E. ( 2005; ). The iron and manganese cycles. In Aquatic Geomicrobiology, vol. 48, pp. 269–312. Edited by A. J. Southward, P. A. Tyler,C. M. Young & L. A. Fuiman. CA, USA: Elsevier/Academic Press.
  7. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin,M. ( 1977; ). A rapid method for base ratio determinationof bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  8. Clarridge, J. E. ( 2004; ). Impact of 16SrRNA gene sequence analysis for identification of bacteria on clinicalmicrobiology and infectious diseases. Clin Microbiol Rev 17, 840–862.[CrossRef]
    [Google Scholar]
  9. Coates, J. D., Bhupathiraju, V. K., Achenbach, L. A., McInerney,M. J. & Lovley, D. R. ( 2001; ). Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, threenew, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51, 581–588.
    [Google Scholar]
  10. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturationrates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  11. DeSantis, T. Z., Jr, Hugenholtz, P., Keller, K., Brodie, E.L., Larsen, N., Piceno, Y. M., Phan, R. & Andersen, G. L. ( 2006; ). NAST: a multiple sequence alignment server for comparativeanalysis of 16S rRNA genes. Nucleic Acids Res 34, W394–W399.[CrossRef]
    [Google Scholar]
  12. Gorby, Y. A. & Lovley, D. R. ( 1992; ). Enzymatic uranium precipitation. Environ Sci Technol 26, 205–207.[CrossRef]
    [Google Scholar]
  13. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye,T., Vandamme, P. & Tiedje, J. M. ( 2007; ). DNA-DNAhybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57, 81–91.[CrossRef]
    [Google Scholar]
  14. Holmes, D. E., Finneran, K. T. & Lovley, D. R. ( 2002; ). Enrichment of Geobacteraceae associated with stimulationof dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68, 2300–2306.[CrossRef]
    [Google Scholar]
  15. Holmes, D. E., Nevin, K. P. & Lovely, D. R. ( 2004; ). Comparison of 16S rRNA, nifD, recA, gyrB, rpoBand fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54, 1591–1599.[CrossRef]
    [Google Scholar]
  16. Holmes, D. E., O'Neil, R. A., Vrionis, H. A., N'Guessan,L. A., Bernad, I. O., Larrahondo, M. J., Adamas, L. A., Ward, J. A., Nicoll,J. S. & other authors ( 2007; ). Subsurface cladeof Geobacteraceae that predominates in a diversity of Fe(III)-reducingsubsurface environments. ISME J 1, 663–677.[CrossRef]
    [Google Scholar]
  17. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination ofDNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  18. Istok, J. D., Senko, J. M., Krumholz, L. R., Watson, D., Bogle,M. A., Peacock, A., Chang, Y. J. & White, D. C. ( 2004; ). In situ bioreduction of technetium and uranium in a nitrate-contaminatedaquifer. Environ Sci Technol 38, 468–475.[CrossRef]
    [Google Scholar]
  19. Kostka, J. E., Thamdrup, B., Glud, R. N. & Canfield, D.E. ( 1999; ). Rates and pathways of carbon oxidationin permanently cold Arctic sediments. Mar Ecol Prog Ser 180, 7–21.[CrossRef]
    [Google Scholar]
  20. Lane, D. J. ( 1991; ). 16S/23S rRNAsequencing. In Nucleic Acid Techniques in Bacterial Systematics,pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester:Wiley.
  21. Lovley, D. R. ( 2006; ). DissimilatoryFe(III)- and Mn(IV) reducing prokaryotes. Prokaryotes 2, 635–658.
    [Google Scholar]
  22. Lovley, D. R. & Anderson, R. T. ( 2000; ). The influence of dissimilatory metal reduction on the fate of organicand metal contaminants in the subsurface. Hydrogeol J 8, 77–88.[CrossRef]
    [Google Scholar]
  23. Lovley, D. R. & Phillips, E. J. P. ( 1986; ). Organic matter mineralization with reduction of ferric iron in anaerobicsediments. Appl Environ Microbiol 51, 683–689.
    [Google Scholar]
  24. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa,E. R. ( 1991; ). Microbial reduction of uranium. Nature 350, 413–416.[CrossRef]
    [Google Scholar]
  25. Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J.E., Phillips, E. J. P., Gorby, Y. A. & Goodwin, S. ( 1993; ). Geobacter metallireducens gen. nov. sp. nov., a microorganismcapable of coupling the complete oxidation of organic compounds to the reductionof iron and other metals. Arch Microbiol 159, 336–344.[CrossRef]
    [Google Scholar]
  26. Lovley, D. R., Holmes, D. E. & Nevin, K. P. ( 2004; ). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49, 219–286.
    [Google Scholar]
  27. Nevin, K. P., Holmes, D. E., Woodard, T. L., Hinlein, E. S.,Ostendorf, D. W. & Lovley, D. R. ( 2005; ). Geobacter bemidjiensis sp. nov. and Geobacter psychrophilussp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55, 1667–1674.[CrossRef]
    [Google Scholar]
  28. Nevin, K. P., Holmes, D. E., Woodard, T. L., Covalla, S. F. &Lovley, D. R. ( 2007; ). Reclassification of Trichlorobacterthiogenes as Geobacter thiogenes comb. nov. Int JSyst Evol Microbiol 57, 463–466.
    [Google Scholar]
  29. North, N. N., Dollhopf, S. L., Petrie, L., Istok, J. D., Balkwill,D. L. & Kostka, J. E. ( 2004; ). Change in bacterialcommunity structure during in situ biostimulation of subsurface sediment cocontaminatedwith uranium and nitrate. Appl Environ Microbiol 70, 4911–4920.[CrossRef]
    [Google Scholar]
  30. Petrie, L. N., North, N., Dollhopf, S. L., Balkwill, D. L. &Kostka, J. E. ( 2003; ). Enumeration and characterizationof Fe(III)-reducing microbial communities from acidic subsurfacesediments contaminated with uranium(VI). Appl EnvironMicrobiol 69, 7467–7479.
    [Google Scholar]
  31. Riley, R. & Zachara, J. ( 1992; ). Chemical contaminants on DOE lands and selection of contaminants mixture forsubsurface science research US Department of Energy, pp. 1–92.Washington, DC: Office of Energy Research.
  32. Roden, E. E. & Wetzel, R. G. ( 1996; ). Organic carbon oxidation and suppression of methane production by microbialFe(III) oxide reduction in vegetated and unvegetated freshwaterwetland sediments. Limnol Oceanogr 41, 1733–1748.[CrossRef]
    [Google Scholar]
  33. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  34. Rooney-Varga, J. N., Anderson, R. T., Fraga, J. L., Ringelberg,D. & Lovley, D. R. ( 1999; ). Microbial communitiesassociated with anaerobic benzene degradation in a petroleum-contaminatedaquifer. Appl Environ Microbiol 65, 3056–3063.
    [Google Scholar]
  35. Shelobolina, E. S., Nevin, K. P., Blakeney-Hayward, J. D., Johnsen,C. V., Plaia, T. W., Krader, P., Woodard, T., Holmes, D. E., VanPraagh, C.W. & Lovley, D. R. ( 2007; ). Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinusfermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Int J Syst Evol Microbiol 57, 126–135.[CrossRef]
    [Google Scholar]
  36. Shelobolina, E. S., Vrionis, H. A., Findlay, R. H. & Lovley,D. R. ( 2008; ). Geobacter uraniireducens sp.nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 58, 1075–1078.[CrossRef]
    [Google Scholar]
  37. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequenceanalysis in the present species definition in bacteriology. IntJ Syst Bacteriol 44, 846–849.
    [Google Scholar]
  38. Stein, L. Y., La Duc, M. T., Grundi, T. J. & Nealson, K.H. ( 2001; ). Bacterial and archaeal population associatedwith freshwater ferromanganous micronodules and sediments. EnvironMicrobiol 3, 10–18.
    [Google Scholar]
  39. Straub, K. L. & Buchholz-Cleven, B. E. E. ( 2001; ). Geobacter bremensis sp. nov. and Geobacterpelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. Int J Syst Evol Microbiol 51, 1805–1808.[CrossRef]
    [Google Scholar]
  40. Straub, K. L., Hanzlik, M. & Buchholz-Cleven, B. E. E. ( 1998; ). The use of biologically produced ferrihydrite forthe isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21, 442–449.[CrossRef]
    [Google Scholar]
  41. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  42. Thamdrup, B. ( 2000; ). Bacterial manganeseand iron reduction in aquatic sediments. Adv Microb Ecol 16, 41–84.
    [Google Scholar]
  43. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivityof progressive multiple sequence alignment through sequence weighting, position-specificgap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  44. Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K. &Swings, J. ( 1996; ). Polyphasic taxonomy, a consensusapproach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  45. Vrionis, H. A., Anderson, R. T., Ortiz-Bernad, I., O'Neill,K. R., Resch, C. T., Peacock, A. D., Dayvault, R., White, D. C., Long, P.E. & Lovley, D. R. ( 2005; ). Microbiological andgeochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71, 6308–6318.[CrossRef]
    [Google Scholar]
  46. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A.D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray,R. G. E. & other authors ( 1987; ). InternationalCommittee on Systematic Bacteriology. Report of the ad hoc committee on reconciliationof approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  47. Widdel, F. & Bak, F. ( 1992; ). Gram-negativemesophilic sulfatereducing bacteria. In The Prokaryotes, 2nd edn,pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W.Harder & K.-H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010843-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010843-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 546 - 553

Phylogenetic analysis of complete gene sequences from species.

Morphological details of strain FRC-32 as observed by scanning electron microscopy.

Fe(III) reduction and growth of strain FRC-32 with acetate as the electron donor and Fe(III)-oxyhydroxide as the sole electron acceptor.

[ Combined PDF] 220 KB



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error