1887

Abstract

Two isolates, designated CadH11 and Cad448, representing uncultured purple sulfur bacterial populations H and 448, respectively, in the chemocline of Lake Cadagno, a crenogenic meromictic lake in Switzerland, were obtained using enrichment and isolation conditions that resembled those used for cultured members of the genus . Phenotypic, genotypic and phylogenetic analyses of these isolates confirmed their assignment to the genus . However, 16S rRNA gene sequence similarities of 98.2 % between CadH11 and Cad448, and similarities of 97.7 and 98.5 %, respectively, with their closest cultured relative DSM 215, as well as differences in DNA G+C content and carbon source utilization suggested that the isolates belonged to two distinct species. DNA–DNA hybridization of CadH11 and Cad448 with DSM 215 showed relatedness values of 46.4 and 60.8 %, respectively; the relatedness value between CadH11 and Cad448 was 59.2 %. Based on this evidence, strains CadH11 and Cad448 represent two novel species within the genus , for which the names sp. nov. and sp. nov. are proposed, respectively. The type strains of sp. nov. and sp. nov. are CadH11 ( = JCM 15112  = KCTC 5954) and Cad448 ( = JCM 15111  = KCTC 15001), respectively.

Funding
This study was supported by the:
  • Swiss National Science Foundation (SNSF) (Award NF31-46855.96)
  • Canton of Ticino
  • Alpine Biology Center Foundation (Switzerland)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.010397-0
2011-07-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1682.html?itemId=/content/journal/ijsem/10.1099/ijs.0.010397-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  4. Eichler B., Pfennig N. 1988; A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov.. Arch Microbiol 149:395–400 [View Article]
    [Google Scholar]
  5. Finster K., Liesack W., Thamdrup B. 1998; Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125[PubMed]
    [Google Scholar]
  6. Hillis D. M., Bull J. J. 1993; An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192 [CrossRef]
    [Google Scholar]
  7. Huelsenbeck J. P., Ronquist F. 2001; mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [View Article][PubMed]
    [Google Scholar]
  8. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  9. Imhoff J. F. 2005; Chromatiaceae Bavendamm 1924, 125AL emend. Imhoff 1984b, 339. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2 pp. 3–40 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer Verlag;
    [Google Scholar]
  10. Janssen P. H., Schuhmann A., Bak F., Liesack W. 1996; Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov.. Arch Microbiol 166:184–192 [View Article]
    [Google Scholar]
  11. Kämpf C., Pfennig N. 1980; Capacity of Chromatiaceae for chemotrophic growth: specific respiration rates of Thiocystis violacea and Chromatium vinosum . Arch Microbiol 127:125–135 [View Article]
    [Google Scholar]
  12. Maddison W. P., Maddison D. R. 1999 MacClade: analysis of phylogeny and character evolution Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  13. Mandel M., Leadbetter E. R., Pfennig N., Trüper H. G. 1971; Deoxyribonucleic acid base compositions of phototrophic bacteria. Int J Syst Bacteriol 21:222–230 [View Article]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of G+C content of deoxribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  15. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [View Article][PubMed]
    [Google Scholar]
  16. Peduzzi S., Tonolla M., Hahn D. 2003; Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic Lake Cadagno, Switzerland. FEMS Microbiol Ecol 45:29–37 [View Article][PubMed]
    [Google Scholar]
  17. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae . Int J Syst Bacteriol 28:283–288 [View Article]
    [Google Scholar]
  18. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  19. Swofford D. L. 2002; paup*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer Associates; Sunderland, MA:
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Tonolla M., Demarta A., Peduzzi R., Hahn D. 1999; In situ analysis of phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 65:1325–1330[PubMed]
    [Google Scholar]
  22. Tonolla M., Peduzzi S., Demarta A., Peduzzi R., Hahn D. 2004; Phototrophic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol 63:161–170 [CrossRef]
    [Google Scholar]
  23. Tonolla M., Peduzzi R., Hahn D. 2005; Long-term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland. Appl Environ Microbiol 71:3544–3550 [View Article][PubMed]
    [Google Scholar]
  24. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn. vol. 4 pp. 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer Verlag; [CrossRef]
    [Google Scholar]
  25. Zaar A., Fuchs G., Golecki J. R., Overmann J. 2003; A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov.. Arch Microbiol 179:174–183[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.010397-0
Loading
/content/journal/ijsem/10.1099/ijs.0.010397-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error