1887

Abstract

A strictly anaerobic, thermophilic bacterium, designated strain R270, was isolated from microbial mats thriving in the thermal waters (66 °C) of a Great Artesian Basin bore (registered no. 17263) runoff channel. Cells of strain R270 were straight to slightly curved rods (3.50–6.00×0.75–1.00 μm) that stained Gram-positive, but possessed a Gram-negative cell-wall ultrastructure. Strain R270 grew optimally in tryptone-yeast extract-Casamino acids medium at 65 °C (growth temperature range between 50 and 70 °C) and at pH 7.0 (growth pH range between 6.0 and 9.0). In the presence of 0.02 and 0.10 % yeast extract, pyruvate and Casamino acids were the only substrates fermented from a wide spectrum of substrates tested. Fe(III), Mn(IV), thiosulfate and elemental sulfur were used as electron acceptors in the presence 0.2 % yeast extract, but not sulfate, sulfite, nitrate, nitrite or fumarate. Growth of strain R270 increased in the presence of Fe(III), which was reduced in the presence of peptone, tryptone, Casamino acids, amyl media, starch, pyruvate, H and CO, but not in the presence of acetate, lactate, propionate, formate, benzoate, glycerol or ethanol. Growth and Fe(III) reduction were inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and 2 % NaCl (w/v). The DNA G+C content of strain R270 was 41±1 mol% ( ) and phylogenetic analysis of the 16S rRNA gene indicated that this isolate was closely related to DSM 14006 (similarity value of 96.1 %) within the family ‘’, class ‘’, phylum ‘’. On the basis of the phylogenetic distance separating the two, together with differences in a number of key phenotypic characteristics, strain R270 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is R270 (=KCTC 5616=DSM 21133).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.009886-0
2010-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1079.html?itemId=/content/journal/ijsem/10.1099/ijs.0.009886-0&mimeType=html&fmt=ahah

References

  1. Brock, T. D. & Freeze, H. ( 1969; ). Thermus aquaticus gen. nov., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297.
    [Google Scholar]
  2. Greenberg, A. E., Clesceri, L. S. & Eaton, A. D. ( 1992; ). Estimation of bacterial density. In Standard Methods for the Examination of Water and Waste Water, pp. 49–50. Washington, DC: American Public Health Association.
  3. Habermehl, M. A. ( 1980; ). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9–38.
    [Google Scholar]
  4. Kanso, S. & Patel, B. K. C. ( 2003; ). Microvirga subterranea gen. nov., sp nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401–406.[CrossRef]
    [Google Scholar]
  5. Kanso, S., Greene, A. C. & Patel, B. K. C. ( 2002; ). Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52, 869–874.[CrossRef]
    [Google Scholar]
  6. Lovley, D. R. ( 1997; ). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305–313.[CrossRef]
    [Google Scholar]
  7. Lovley, D. R. & Phillips, E. J. P. ( 1988; ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.
    [Google Scholar]
  8. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  9. Ogg, C. D. & Patel, B. K. C. ( 2009a; ). Caloramator australicus sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 59, 95–101.[CrossRef]
    [Google Scholar]
  10. Ogg, C. D. & Patel, B. K. C. ( 2009b; ). Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 59, 964–971.[CrossRef]
    [Google Scholar]
  11. Ogg, C. D. & Patel, B. K. C. ( 2009c; ). Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia. Int J Syst Evol Microbiol 59, 1100–1107.[CrossRef]
    [Google Scholar]
  12. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985a; ). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277–288.[CrossRef]
    [Google Scholar]
  13. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985b; ). Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef]
    [Google Scholar]
  14. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F. ( 2006; ). Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef]
    [Google Scholar]
  15. Sørensen, J. ( 1982; ). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319–324.
    [Google Scholar]
  16. Spanevello, M. D. ( 2001; ). The phylogeny of prokaryotes associated with Australia's Great Artesian Basin. PhD thesis, School of Biomolecular and Physical Science, Griffith University, Brisbane, Australia.
  17. Spanevello, M. D. & Patel, B. K. C. ( 2004; ). The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel. FEMS Microbiol Ecol 50, 63–73.[CrossRef]
    [Google Scholar]
  18. Spanevello, M. D., Yamamoto, H. & Patel, B. K. C. ( 2002; ). Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52, 795–800.[CrossRef]
    [Google Scholar]
  19. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E. ( 1994; ). Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38, 91–112.[CrossRef]
    [Google Scholar]
  20. Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, D. R. ( 1998; ). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65–67.[CrossRef]
    [Google Scholar]
  21. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  22. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I. ( 2002; ). Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef]
    [Google Scholar]
  23. Zeikus, J. G., Hegge, P. W. & Anderson, M. A. ( 1979; ). Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41–48.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.009886-0
Loading
/content/journal/ijsem/10.1099/ijs.0.009886-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error